These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20126728)

  • 1. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries.
    Du G; Guo Z; Wang S; Zeng R; Chen Z; Liu H
    Chem Commun (Camb); 2010 Feb; 46(7):1106-8. PubMed ID: 20126728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers.
    Subramanian V; Zhu H; Wei B
    J Phys Chem B; 2006 Apr; 110(14):7178-83. PubMed ID: 16599483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS₂ nanowall and cellulose binder.
    Sen UK; Mitra S
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1240-7. PubMed ID: 23360622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A binder-free CNT network-MoS2 composite as a high performance anode material in lithium ion batteries.
    Lu C; Liu WW; Li H; Tay BK
    Chem Commun (Camb); 2014 Mar; 50(25):3338-40. PubMed ID: 24535582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries.
    Chang K; Chen W
    Chem Commun (Camb); 2011 Apr; 47(14):4252-4. PubMed ID: 21380470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications.
    Rong J; Masarapu C; Ni J; Zhang Z; Wei B
    ACS Nano; 2010 Aug; 4(8):4683-90. PubMed ID: 20731447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries.
    Bindumadhavan K; Srivastava SK; Mahanty S
    Chem Commun (Camb); 2013 Mar; 49(18):1823-5. PubMed ID: 23358567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wintersweet-flower-like CoFe2O4/MWCNTs hybrid material for high-capacity reversible lithium storage.
    Wang Y; Park J; Sun B; Ahn H; Wang G
    Chem Asian J; 2012 Aug; 7(8):1940-6. PubMed ID: 22593078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.
    Wang H; Cui LF; Yang Y; Sanchez Casalongue H; Robinson JT; Liang Y; Cui Y; Dai H
    J Am Chem Soc; 2010 Oct; 132(40):13978-80. PubMed ID: 20853844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-Fe2O3 nanotubes with superior lithium storage capability.
    Wang Z; Luan D; Madhavi S; Li CM; Lou XW
    Chem Commun (Camb); 2011 Jul; 47(28):8061-3. PubMed ID: 21681305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries.
    Qian J; Chen Y; Wu L; Cao Y; Ai X; Yang H
    Chem Commun (Camb); 2012 Jul; 48(56):7070-2. PubMed ID: 22684188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries.
    Wu B; Song H; Zhou J; Chen X
    Chem Commun (Camb); 2011 Aug; 47(30):8653-5. PubMed ID: 21725544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium transport at silicon thin film: barrier for high-rate capability anode.
    Peng B; Cheng F; Tao Z; Chen J
    J Chem Phys; 2010 Jul; 133(3):034701. PubMed ID: 20649344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel mesoporous carbon-silica-titania nanocomposite as a high performance anode material in lithium ion batteries.
    Zhou Y; Kim Y; Jo C; Lee J; Lee CW; Yoon S
    Chem Commun (Camb); 2011 May; 47(17):4944-6. PubMed ID: 21424009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays.
    Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM
    Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries.
    Ji L; Zhang X
    Nanotechnology; 2009 Apr; 20(15):155705. PubMed ID: 19420557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hollow CoFe₂O₄ nanospheres as a high capacity anode material for lithium ion batteries.
    Wang Y; Su D; Ung A; Ahn JH; Wang G
    Nanotechnology; 2012 Feb; 23(5):055402. PubMed ID: 22238290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MoS₂-TiC-C Nanocomposites as New Anode Materials for High-Performance Lithium-Ion Batteries.
    Nguyen QH; Hur J
    J Nanosci Nanotechnol; 2019 Feb; 19(2):996-1000. PubMed ID: 30360188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries.
    Zhan F; Geng B; Guo Y
    Chemistry; 2009 Jun; 15(25):6169-74. PubMed ID: 19437475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.