These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20126756)

  • 21. Thermal behavior of water in the selected starch- and cellulose-based polymeric hydrogels.
    Faroongsarng D; Sukonrat P
    Int J Pharm; 2008 Mar; 352(1-2):152-8. PubMed ID: 18061379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploration of the dynamical evolution and the associated energetics of water nanoclusters formed in a hydrophobic solvent.
    Sinha SS; Mitra RK; Verma PK; Pal SK
    J Phys Chem B; 2009 Apr; 113(14):4744-50. PubMed ID: 19290584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water interaction with hydrophobic and hydrophilic soot particles.
    Popovicheva O; Persiantseva NM; Shonija NK; DeMott P; Koehler K; Petters M; Kreidenweis S; Tishkova V; Demirdjian B; Suzanne J
    Phys Chem Chem Phys; 2008 May; 10(17):2332-44. PubMed ID: 18414725
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Confined water nanofilm promoting nonenzymatic degradation of DNA molecules.
    Ye M; Li B; Zhang Y; Li H; Wang X; Hu J
    J Phys Chem B; 2011 Mar; 115(12):2754-8. PubMed ID: 21384809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen bonding and kinetic/thermodynamic transitions of aqueous trehalose solutions at cryogenic temperatures.
    Malsam J; Aksan A
    J Phys Chem B; 2009 May; 113(19):6792-9. PubMed ID: 19366245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microscale patterning of hydrophobic/hydrophilic surfaces by spatially controlled galvanic displacement reactions.
    Rizzello L; Shankar SS; Fragouli D; Athanassiou A; Cingolani R; Pompa PP
    Langmuir; 2009 Jun; 25(11):6019-23. PubMed ID: 19391577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.
    Koehler KA; DeMott PJ; Kreidenweis SM; Popovicheva OB; Petters MD; Carrico CM; Kireeva ED; Khokhlova TD; Shonija NK
    Phys Chem Chem Phys; 2009 Sep; 11(36):7906-20. PubMed ID: 19727498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water properties inside nanoscopic hydrophobic pocket studied by computer simulations.
    Setny P; Geller M
    J Chem Phys; 2006 Oct; 125(14):144717. PubMed ID: 17042641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of confinement on the liquid-liquid phase transition of supercooled water.
    Brovchenko I; Oleinikova A
    J Chem Phys; 2007 Jun; 126(21):214701. PubMed ID: 17567207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and dynamics of a Gay-Berne liquid crystal confined in cylindrical nanopores.
    Ji Q; Lefort R; Busselez R; Morineau D
    J Chem Phys; 2009 Jun; 130(23):234501. PubMed ID: 19548733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanocrystalline Janus films of inorganic materials prepared at the liquid-liquid interface.
    Biswas K; Rao CN
    J Colloid Interface Sci; 2009 May; 333(1):404-10. PubMed ID: 19232632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanostructure-dependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces: from highly adhesive to self-cleanable.
    Lee W; Park BG; Kim DH; Ahn DJ; Park Y; Lee SH; Lee KB
    Langmuir; 2010 Feb; 26(3):1412-5. PubMed ID: 20039661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the hydrophobicity of mesoporous silicas and clays with silica pillars by water adsorption and DRIFT.
    Pires J; Pinto M; Estella J; Echeverría JC
    J Colloid Interface Sci; 2008 Jan; 317(1):206-13. PubMed ID: 17945244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational assessment of the entropy of solvation of small-sized hydrophobic entities.
    Mahajan R; Kranzlmüller D; Volkert J; Hansmann UH; Höfinger S
    Phys Chem Chem Phys; 2006 Dec; 8(47):5515-21. PubMed ID: 17136266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong temperature dependence of water reorientation in hydrophobic hydration shells.
    Petersen C; Tielrooij KJ; Bakker HJ
    J Chem Phys; 2009 Jun; 130(21):214511. PubMed ID: 19508080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Capillary kinetics of water in homogeneous, hydrophilic polymeric micro- to nanochannels.
    Jeong HE; Kim P; Kwak MK; Seo CH; Suh KY
    Small; 2007 May; 3(5):778-82. PubMed ID: 17352432
    [No Abstract]   [Full Text] [Related]  

  • 38. The peculiarities of water crystallization and ice melting processes in the roots of one-year plants (Plantago major L.).
    Bakradze N; Kiziria E; Sokhadze V; Gogichaishvili S
    Cryo Letters; 2008; 29(3):217-28. PubMed ID: 18754062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing the hydrophobic effect in confined water nanodrops.
    Rao PV; Gandhi KS; Ayappa KG
    Langmuir; 2007 Dec; 23(26):12795-8. PubMed ID: 17994776
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Absence of the density minimum of supercooled water in hydrophobic confinement.
    Zhang Y; Liu KH; Lagi M; Liu D; Littrell KC; Mou CY; Chen SH
    J Phys Chem B; 2009 Apr; 113(15):5007-10. PubMed ID: 19317391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.