These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 20127)

  • 61. Binding energetics of phosphorus-containing inhibitors of thermolysin.
    Grobelny D; Goli UB; Galardy RE
    Biochemistry; 1989 Jun; 28(12):4948-51. PubMed ID: 2765520
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A theoretical study of Zn++ interacting with models of ligands present at the thermolysin active site.
    Giessner-Prettre C; Jacob O
    J Comput Aided Mol Des; 1989 Mar; 3(1):23-37. PubMed ID: 2715793
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Magnetic resonance studies of the binding of ATP and cations to human hemoglobin.
    Gupta RK; Benovic JL; Rose ZB
    J Biol Chem; 1978 Sep; 253(17):6165-71. PubMed ID: 210170
    [No Abstract]   [Full Text] [Related]  

  • 65. Structural analysis of the inhibition of thermolysin by an active-site-directed irreversible inhibitor.
    Holmes MA; Tronrud DE; Matthews BW
    Biochemistry; 1983 Jan; 22(1):236-40. PubMed ID: 6830761
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The cooperative binding of two calcium ions to the double site of apothermolysin.
    Voordouw G; Roche RS
    Biochemistry; 1974 Nov; 13(24):5017-21. PubMed ID: 4433534
    [No Abstract]   [Full Text] [Related]  

  • 67. Evidence of an essential histidine residue in thermolysin.
    Burstein Y; Walsh KA; Neurath H
    Biochemistry; 1974 Jan; 13(1):205-10. PubMed ID: 4808703
    [No Abstract]   [Full Text] [Related]  

  • 68. Substrate and metal ion binding to carbamate kinase: NMR and EPR studies.
    Pillai RP; Marshall M; Villafranca JJ
    Arch Biochem Biophys; 1980 Jan; 199(1):21-7. PubMed ID: 6243908
    [No Abstract]   [Full Text] [Related]  

  • 69. Distance measurements between the metal-binding sites in thermolysin using terbium ion as a fluorescent probe.
    Berner VG; Darnall DW; Birnbaum ER
    Biochem Biophys Res Commun; 1975 Sep; 66(2):763-8. PubMed ID: 1180935
    [No Abstract]   [Full Text] [Related]  

  • 70. Trifluoroacetylated peptides as substrates and inhibitors of elastase: a nuclear magnetic resonance study.
    Dimicoli JL; Bieth J; Lhoste JM
    Biochemistry; 1976 May; 15(10):2230-6. PubMed ID: 1276135
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Inhibition of thermolysin and human alpha-thrombin by cobalt(III) Schiff base complexes.
    Takeuchi T; Böttcher A; Quezada CM; Meade TJ; Gray HB
    Bioorg Med Chem; 1999 May; 7(5):815-9. PubMed ID: 10400334
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular dynamics study of the binding of phenylalanine stereoisomers to thermolysin.
    Ghosh I; Edholm O
    Biophys Chem; 1994 Jun; 50(3):237-48. PubMed ID: 8011945
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The structural and functional roles of metal ions in thermolysin.
    Roche RS; Voordouw G
    CRC Crit Rev Biochem; 1978; 5(1):1-23. PubMed ID: 357082
    [No Abstract]   [Full Text] [Related]  

  • 74. The mechanism of aconitase action. 3. Detection and properties of enzyme-metal-substrate and enzyme-metal-inhibitor bridge complexes with manganese(II) and iron(II).
    Villafranca JJ; Mildvan AS
    J Biol Chem; 1972 Jun; 247(11):3454-63. PubMed ID: 4337855
    [No Abstract]   [Full Text] [Related]  

  • 75. Conformation states of concanavalin A: kinetics of transitions induced by interaction with Mn2+ and Ca2+ ions.
    Brown RD; Brewer CF; Koenig SH
    Biochemistry; 1977 Aug; 16(17):3883-96. PubMed ID: 20132
    [No Abstract]   [Full Text] [Related]  

  • 76. Binding modes and pharmacophore modelling of thermolysin inhibitors.
    Khan MT; Wuxiuer Y; Sylte I
    Mini Rev Med Chem; 2012 Jun; 12(6):515-33. PubMed ID: 22587766
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A nuclear magnetic resonance study of the metal binding sites in bacitracin.
    Wasylishen RE; Graham MR
    Can J Biochem; 1975 Dec; 53(12):1250-4. PubMed ID: 1220854
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Solvent-temperature perturbations of ionizable groups as a tool for the investigation of the active site of enzymes.
    Maurel P; Douzou P
    J Biol Chem; 1975 Apr; 250(7):2678-80. PubMed ID: 235525
    [TBL] [Abstract][Full Text] [Related]  

  • 79. pH Regulates Ligand Binding to an Enzyme Active Site by Modulating Intermediate Populations.
    Singh K; Muttathukattil AN; Singh PC; Reddy G
    J Phys Chem B; 2022 Dec; 126(47):9759-9770. PubMed ID: 36383764
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The determination of the binding constant of metalloenzymes for their active site metal ion from ligand inhibition data. Theoretical analysis and application to the inhibition of thermolysin by 1,10-phenanthroline.
    Voordouw G; Milo C; Roche RS
    Anal Biochem; 1976 Feb; 70(2):313-26. PubMed ID: 1267126
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.