BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 20127145)

  • 1. Degradation of Chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis.
    Thengodkar RR; Sivakami S
    Biodegradation; 2010 Jul; 21(4):637-44. PubMed ID: 20127145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1.
    Anwar S; Liaquat F; Khan QM; Khalid ZM; Iqbal S
    J Hazard Mater; 2009 Aug; 168(1):400-5. PubMed ID: 19297093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium.
    Yang L; Zhao YH; Zhang BX; Yang CH; Zhang X
    FEMS Microbiol Lett; 2005 Oct; 251(1):67-73. PubMed ID: 16143458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Role of sodium ions and their uptake by cells of cultured blue-green algae, Spirulina platensis and Spirulina maxima].
    Kol'chugina IB; Makarova EN
    Mikrobiologiia; 2005; 74(6):745-9. PubMed ID: 16400983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Purification and properties of Se-containing allophycocyanins from selenium rich Spirulina platensis].
    Huang Z; Yang F; Zheng WJ
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):401-5. PubMed ID: 16933609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study of the factors of Cr(III) bioaccumulation on Spirulina platensis].
    Li ZY; Li YG; Guo SY; Li L; Zhang SL
    Sheng Wu Gong Cheng Xue Bao; 2000 Jan; 16(1):108-12. PubMed ID: 10883289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass.
    Gokhale SV; Jyoti KK; Lele SS
    Bioresour Technol; 2008 Jun; 99(9):3600-8. PubMed ID: 17900893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of glycerol as carbon source on the growth, pigment and lipid production in Spirulina platensis.
    Narayan MS; Manoj GP; Vatchravelu K; Bhagyalakshmi N; Mahadevaswamy M
    Int J Food Sci Nutr; 2005 Nov; 56(7):521-8. PubMed ID: 16503562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-sensitive conductometric detection of heavy metals based on inhibition of alkaline phosphatase activity from Arthrospira platensis.
    Tekaya N; Saiapina O; Ben Ouada H; Lagarde F; Ben Ouada H; Jaffrezic-Renault N
    Bioelectrochemistry; 2013 Apr; 90():24-9. PubMed ID: 23174485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spirulina platensis protects against gentamicin-induced nephrotoxicity in rats.
    Karadeniz A; Yildirim A; Simsek N; Kalkan Y; Celebi F
    Phytother Res; 2008 Nov; 22(11):1506-10. PubMed ID: 18690652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis and mobilization of poly(3-hydroxybutyrate) [P(3HB)] by Spirulina platensis.
    Jau MH; Yew SP; Toh PS; Chong AS; Chu WL; Phang SM; Najimudin N; Sudesh K
    Int J Biol Macromol; 2005 Aug; 36(3):144-51. PubMed ID: 16005060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Gordonia sp JAAS1 in biodegradation of chlorpyrifos and its hydrolysing metabolite 3,5,6-trichloro-2-pyridinol.
    Abraham J; Shanker A; Silambarasan S
    Lett Appl Microbiol; 2013 Dec; 57(6):510-6. PubMed ID: 23909785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co2+, Cu2+, and Zn2+ accumulation by cyanobacterium Spirulina platensis.
    Vannela R; Verma SK
    Biotechnol Prog; 2006; 22(5):1282-93. PubMed ID: 17022665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An alkaline phosphatase from Bacillus amyloliquefaciens YP6 of new application in biodegradation of five broad-spectrum organophosphorus pesticides.
    Meng D; Jiang W; Li J; Huang L; Zhai L; Zhang L; Guan Z; Cai Y; Liao X
    J Environ Sci Health B; 2019; 54(4):336-343. PubMed ID: 30822193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Spirulina platensis biomass yield using a fed-batch process.
    Costa JA; Colla LM; Duarte Filho PF
    Bioresour Technol; 2004 May; 92(3):237-41. PubMed ID: 14766156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of extracts from Spirulina platensis bioaccumulating cadmium and zinc on L929 cells.
    Pane L; Solisio C; Lodi A; Luigi Mariottini G; Converti A
    Ecotoxicol Environ Saf; 2008 May; 70(1):121-6. PubMed ID: 17662387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The detection of Hg2+ by cyanobacteria in aqueous media.
    Suresh M; Mishra SK; Mishra S; Das A
    Chem Commun (Camb); 2009 May; (18):2496-8. PubMed ID: 19532868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined stress response analysis of Spirulina platensis in terms of global differentially expressed proteins, and mRNA levels and stability of fatty acid biosynthesis genes.
    Jeamton W; Mungpakdee S; Sirijuntarut M; Prommeenate P; Cheevadhanarak S; Tanticharoen M; Hongsthong A
    FEMS Microbiol Lett; 2008 Apr; 281(2):121-31. PubMed ID: 18336550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells.
    Bermejo-Bescós P; Piñero-Estrada E; Villar del Fresno AM
    Toxicol In Vitro; 2008 Sep; 22(6):1496-502. PubMed ID: 18572379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor.
    Li ZY; Guo SY; Li L; Cai MY
    Bioresour Technol; 2007 Feb; 98(3):700-5. PubMed ID: 16581244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.