These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20127187)

  • 1. Enhanced crystal packing due to solvent reorganization through reductive methylation of lysine residues in oxidoreductase from Streptococcus pneumoniae.
    Fan Y; Joachimiak A
    J Struct Funct Genomics; 2010 Jun; 11(2):101-11. PubMed ID: 20127187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New surface contacts formed upon reductive lysine methylation: improving the probability of protein crystallization.
    Sledz P; Zheng H; Murzyn K; Chruszcz M; Zimmerman MD; Chordia MD; Joachimiak A; Minor W
    Protein Sci; 2010 Jul; 19(7):1395-404. PubMed ID: 20506323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes As Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations.
    Baird-Titus JM; Thapa M; Doerdelmann T; Combs KA; Rance M
    Biochemistry; 2018 May; 57(19):2796-2813. PubMed ID: 29664630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational-entropy gain of solvent upon protein folding.
    Harano Y; Kinoshita M
    Biophys J; 2005 Oct; 89(4):2701-10. PubMed ID: 16055541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enthalpy-entropy contributions to the potential of mean force of nanoscopic hydrophobic solutes.
    Choudhury N; Pettitt BM
    J Phys Chem B; 2006 Apr; 110(16):8459-63. PubMed ID: 16623532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent entropy contribution to the free energy of protein crystallization.
    Vekilov PG; Feeling-Taylor AR; Yau ST; Petsev D
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 1):1611-6. PubMed ID: 12351872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crucial importance of translational entropy of water in pressure denaturation of proteins.
    Harano Y; Kinoshita M
    J Chem Phys; 2006 Jul; 125(2):24910. PubMed ID: 16848614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: comparison between hard-sphere solvent and water.
    Oshima H; Kinoshita M
    J Chem Phys; 2015 Apr; 142(14):145103. PubMed ID: 25877596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent entropy-driven searching for protein modeling examined and tested in simplified models.
    König R; Dandekar T
    Protein Eng; 2001 May; 14(5):329-35. PubMed ID: 11438755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enthalpy-entropy compensation in the effects of urea on hydrophobic interactions.
    van der Vegt NF; Lee ME; Trzesniak D; van Gunsteren WF
    J Phys Chem B; 2006 Jul; 110(26):12852-5. PubMed ID: 16805581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent electrostriction-driven peptide folding revealed by quasi-Gaussian entropy theory and molecular dynamics simulation.
    Noé F; Daidone I; Smith JC; di Nola A; Amadei A
    J Phys Chem B; 2008 Sep; 112(35):11155-63. PubMed ID: 18698708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in lysine pKa values may be used to improve NMR signal dispersion in reductively methylated proteins.
    Abraham SJ; Kobayashi T; Solaro RJ; Gaponenko V
    J Biomol NMR; 2009 Apr; 43(4):239-46. PubMed ID: 19280122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (NZ)CH...O contacts assist crystallization of a ParB-like nuclease.
    Shaw N; Cheng C; Tempel W; Chang J; Ng J; Wang XY; Perrett S; Rose J; Rao Z; Wang BC; Liu ZJ
    BMC Struct Biol; 2007 Jul; 7():46. PubMed ID: 17617922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylation-targeted specificity of the DNA binding proteins R.DpnI and MeCP2 studied by molecular dynamics simulations.
    Shanak S; Ulucan O; Helms V
    J Mol Model; 2017 May; 23(5):152. PubMed ID: 28374217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural response to mutation at a protein-protein interface.
    Vaughan CK; Buckle AM; Fersht AR
    J Mol Biol; 1999 Mar; 286(5):1487-506. PubMed ID: 10064711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural stability of proteins in aqueous and nonpolar environments.
    Yasuda S; Oshima H; Kinoshita M
    J Chem Phys; 2012 Oct; 137(13):135103. PubMed ID: 23039615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein conformational entropy is not slaved to water.
    Marques BS; Stetz MA; Jorge C; Valentine KG; Wand AJ; Nucci NV
    Sci Rep; 2020 Oct; 10(1):17587. PubMed ID: 33067552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ES/IS: estimation of conformational free energy by combining dynamics simulations with explicit solvent with an implicit solvent continuum model.
    Vorobjev YN; Hermans J
    Biophys Chem; 1999 Apr; 78(1-2):195-205. PubMed ID: 10343388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-structuring protein crystals porosity for biotemplating by chemical modification of lysine residues.
    Cohen-Hadar N; Lagziel-Simis S; Wine Y; Frolow F; Freeman A
    Biotechnol Bioeng; 2011 Jan; 108(1):1-11. PubMed ID: 20824688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of helix formation in small peptides of varying length in vacuo, in implicit solvent, and in explicit solvent.
    Wang X; Deng B; Sun Z
    J Mol Model; 2018 Dec; 25(1):3. PubMed ID: 30542771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.