These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2012720)

  • 1. Near wall concentration profiles of 1.0 and 2.5 microns beads during flow of blood suspensions.
    Koleski JF; Eckstein EC
    ASAIO Trans; 1991; 37(1):9-12. PubMed ID: 2012720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentration profiles of 1 and 2.5 microns beads during blood flow. Hematocrit effects.
    Eckstein EC; Koleski JF; Waters CM
    ASAIO Trans; 1989; 35(3):188-90. PubMed ID: 2597441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentration profiles of platelet-sized latex beads for conditions relevant to hollow-fiber hemodialyzers.
    Waters CM; Eckstein EC
    Artif Organs; 1990 Feb; 14(1):7-13. PubMed ID: 2302078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate.
    Tilles AW; Eckstein EC
    Microvasc Res; 1987 Mar; 33(2):211-23. PubMed ID: 3587076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditions for the occurrence of large near-wall excesses of small particles during blood flow.
    Eckstein EC; Tilles AW; Millero FJ
    Microvasc Res; 1988 Jul; 36(1):31-9. PubMed ID: 3185301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient lateral transport of platelet-sized particles in flowing blood suspensions.
    Yeh C; Eckstein EC
    Biophys J; 1994 May; 66(5):1706-16. PubMed ID: 8061219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An estimated shape function for drift in a platelet-transport model.
    Yeh C; Calvez AC; Eckstein EC
    Biophys J; 1994 Sep; 67(3):1252-9. PubMed ID: 7811940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of platelets in flowing blood.
    Eckstein EC; Bilsker DL; Waters CM; Kippenhan JS; Tilles AW
    Ann N Y Acad Sci; 1987; 516():442-52. PubMed ID: 3439741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model of platelet transport in flowing blood with drift and diffusion terms.
    Eckstein EC; Belgacem F
    Biophys J; 1991 Jul; 60(1):53-69. PubMed ID: 1883945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of hemofiltration on fiber platelet concentration.
    Drake KL; Eckstein EC
    Artif Organs; 1981 Nov; 5(4):363-71. PubMed ID: 7325878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood.
    Aarts PA; van den Broek SA; Prins GW; Kuiken GD; Sixma JJ; Heethaar RM
    Arteriosclerosis; 1988; 8(6):819-24. PubMed ID: 3196226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional platelet concentration in blood flow through capillary tubes.
    Corattiyl V; Eckstein EC
    Microvasc Res; 1986 Sep; 32(2):261-70. PubMed ID: 3762431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New strategy of platelet substitutes for enhancing platelet aggregation at high shear rates: cooperative effects of a mixed system of fibrinogen gamma-chain dodecapeptide- or glycoprotein Ibalpha-conjugated latex beads under flow conditions.
    Okamura Y; Handa M; Suzuki H; Ikeda Y; Takeoka S
    J Artif Organs; 2006; 9(4):251-8. PubMed ID: 17171404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood flow in single surface arterioles and venules on the mouse somatosensory cortex measured with videomicroscopy, fluorescent dextrans, nonoccluding fluorescent beads, and computer-assisted image analysis.
    Rovainen CM; Woolsey TA; Blocher NC; Wang DB; Robinson OF
    J Cereb Blood Flow Metab; 1993 May; 13(3):359-71. PubMed ID: 7683023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical and chemical effects of red cells in the shear-induced aggregation of human platelets.
    Goldsmith HL; Bell DN; Braovac S; Steinberg A; McIntosh F
    Biophys J; 1995 Oct; 69(4):1584-95. PubMed ID: 8534829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hematocrit on adenosine diphosphate-induced aggregation of human platelets in tube flow.
    Goldsmith HL; Kaufer ES; McIntosh FA
    Biorheology; 1995; 32(5):537-52. PubMed ID: 8541523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood.
    Uijttewaal WS; Nijhof EJ; Bronkhorst PJ; Den Hartog E; Heethaar RM
    Am J Physiol; 1993 Apr; 264(4 Pt 2):H1239-44. PubMed ID: 8476101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube.
    El-Khatib FH; Damiano ER
    Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pressure-flow relation in resting rat skeletal muscle perfused with pure erythrocyte suspensions.
    Sutton DW; Schmid-Schönbein GW
    Biorheology; 1995; 32(1):29-42. PubMed ID: 7548859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer.
    Cokelet GR; Brown JR; Codd SL; Seymour JD
    Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.