BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20127668)

  • 21. (S,S)-trans-cyclopentane-constrained peptide nucleic acids. a general backbone modification that improves binding affinity and sequence specificity.
    Pokorski JK; Witschi MA; Purnell BL; Appella DH
    J Am Chem Soc; 2004 Nov; 126(46):15067-73. PubMed ID: 15548003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of a metallopeptide-PNA conjugate and its oxidative cross-linking to a DNA target.
    Kornyushyna O; Stemmler AJ; Graybosch DM; Bergenthal I; Burrows CJ
    Bioconjug Chem; 2005; 16(1):178-83. PubMed ID: 15656589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclohexanyl peptide nucleic acids (chPNAs) for preferential RNA binding: effective tuning of dihedral angle beta in PNAs for DNA/RNA discrimination.
    Govindaraju T; Madhuri V; Kumar VA; Ganesh KN
    J Org Chem; 2006 Jan; 71(1):14-21. PubMed ID: 16388612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disulfide cross-linked polymer capsules: en route to biodeconstructible systems.
    Zelikin AN; Quinn JF; Caruso F
    Biomacromolecules; 2006 Jan; 7(1):27-30. PubMed ID: 16398494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable DNA release from cross-linked ultrathin DNA/PLL multilayered films.
    Ren K; Ji J; Shen J
    Bioconjug Chem; 2006; 17(1):77-83. PubMed ID: 16417254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradable click capsules with engineered drug-loaded multilayers.
    Ochs CJ; Such GK; Yan Y; van Koeverden MP; Caruso F
    ACS Nano; 2010 Mar; 4(3):1653-63. PubMed ID: 20201548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application.
    Ariga K; Hill JP; Ji Q
    Phys Chem Chem Phys; 2007 May; 9(19):2319-40. PubMed ID: 17492095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. (1S,2R/1R,2S)-cis-cyclopentyl PNAs (cpPNAs) as constrained PNA analogues: synthesis and evaluation of aeg-cpPNA chimera and stereopreferences in hybridization with DNA/RNA.
    Govindaraju T; Kumar VA; Ganesh KN
    J Org Chem; 2004 Aug; 69(17):5725-34. PubMed ID: 15307746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence-specific binding of DNA to liposomes containing di-alkyl peptide nucleic acid (PNA) amphiphiles.
    Marques BF; Schneider JW
    Langmuir; 2005 Mar; 21(6):2488-94. PubMed ID: 15752044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of a PNA2-DNA2 hybrid quadruplex.
    Datta B; Schmitt C; Armitage BA
    J Am Chem Soc; 2003 Apr; 125(14):4111-8. PubMed ID: 12670232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An atomic force microscopy investigation on self-assembled peptide nucleic acid structures on gold(111) surface.
    Ghosh S; Mukhopadhyay R
    J Colloid Interface Sci; 2011 Aug; 360(1):52-60. PubMed ID: 21600585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection.
    Cattani-Scholz A; Pedone D; Dubey M; Neppl S; Nickel B; Feulner P; Schwartz J; Abstreiter G; Tornow M
    ACS Nano; 2008 Aug; 2(8):1653-60. PubMed ID: 19206369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of metal nanoparticles aggregation and dispersion by PNA and PNA-DNA complexes, and its application for colorimetric DNA detection.
    Su X; Kanjanawarut R
    ACS Nano; 2009 Sep; 3(9):2751-9. PubMed ID: 19708641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PNA-encoded protease substrate microarrays.
    Winssinger N; Damoiseaux R; Tully DC; Geierstanger BH; Burdick K; Harris JL
    Chem Biol; 2004 Oct; 11(10):1351-60. PubMed ID: 15489162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide nucleic acid-assisted topological labeling of duplex dna.
    Demidov VV; Kuhn H; Lavrentieva-Smolina IV; Frank-Kamenetskii MD
    Methods; 2001 Feb; 23(2):123-31. PubMed ID: 11181031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extending recognition by peptide nucleic acids (PNAs): binding to duplex DNA and inhibition of transcription by tail-clamp PNA-peptide conjugates.
    Kaihatsu K; Shah RH; Zhao X; Corey DR
    Biochemistry; 2003 Dec; 42(47):13996-4003. PubMed ID: 14636068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orthogonal ligation: a three piece assembly of a PNA-peptide-PNA conjugate.
    Burlina F; Dixson DD; Doyle RP; Chassaing G; Boddy CN; Dawson P; Offer J
    Chem Commun (Camb); 2008 Jun; (24):2785-7. PubMed ID: 18688310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and DNA binding properties of dioxime-peptide nucleic acids.
    Mokhir A; Krämer R; Voloshin YZ; Varzatskii OA
    Bioorg Med Chem Lett; 2004 Jun; 14(11):2927-30. PubMed ID: 15125961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation.
    Kerman K; Vestergaard M; Nagatani N; Takamura Y; Tamiya E
    Anal Chem; 2006 Apr; 78(7):2182-9. PubMed ID: 16579596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of metal coordination on the mismatch tolerance of ligand-modified PNA duplexes.
    Watson RM; Skorik YA; Patra GK; Achim C
    J Am Chem Soc; 2005 Oct; 127(42):14628-39. PubMed ID: 16231915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.