These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 20127771)

  • 21. One-pot synthesis of Ag-Au bimetallic nanoparticles with Au shell and their high catalytic activity for aerobic glucose oxidation.
    Zhang H; Okuni J; Toshima N
    J Colloid Interface Sci; 2011 Feb; 354(1):131-8. PubMed ID: 21067768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photocatalytic degradation of methyl red dye by silica nanoparticles.
    Badr Y; Abd El-Wahed MG; Mahmoud MA
    J Hazard Mater; 2008 Jun; 154(1-3):245-53. PubMed ID: 18055110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The dehydrogenation of ammonia-borane catalysed by dicarbonylruthenacyclic(II) complexes.
    Boulho C; Djukic JP
    Dalton Trans; 2010 Oct; 39(38):8893-905. PubMed ID: 20714618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-Co2B, Ni-Ni3B and Co-Ni-B nanocomposites catalyzed ammonia-borane methanolysis for hydrogen generation.
    Kalidindi SB; Vernekar AA; Jagirdar BR
    Phys Chem Chem Phys; 2009 Feb; 11(5):770-5. PubMed ID: 19290323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.
    Wang AQ; Chang CM; Mou CY
    J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen liberation from the hydrolytic dehydrogenation of dimethylamine-borane at room temperature by using a novel ruthenium nanocatalyst.
    Caliskan S; Zahmakiran M; Durap F; Özkar S
    Dalton Trans; 2012 Apr; 41(16):4976-84. PubMed ID: 22410969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation and catalytic activity of spherical composites with surfaces coated with gold nanoparticles.
    Chen X; Zhao D; An Y; Zhang Y; Cheng J; Wang B; Shi L
    J Colloid Interface Sci; 2008 Jun; 322(2):414-20. PubMed ID: 18440011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hollow Ni-B amorphous alloy with enhanced catalytic efficiency prepared in emulsion system.
    Li H; Xu Y; Liu J; Zhao Q; Li H
    J Colloid Interface Sci; 2009 Jun; 334(2):176-82. PubMed ID: 19394949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic dechlorination of monochlorobenzene with a new type of nanoscale Ni(B)/Fe(B) bimetallic catalytic reductant.
    Han Y; Li W; Zhang M; Tao K
    Chemosphere; 2008 May; 72(1):53-8. PubMed ID: 18378276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of free N-heterocyclic carbene (NHC) in the catalytic dehydrogenation of ammonia-borane in the nickel NHC system.
    Zimmerman PM; Paul A; Zhang Z; Musgrave CB
    Angew Chem Int Ed Engl; 2009; 48(12):2201-5. PubMed ID: 19204967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Architectures based on the use of gold nanoparticles and ruthenium complexes as a new route to improve genosensor sensitivity.
    García T; Casero E; Revenga-Parra M; Martín-Benito J; Pariente F; Vázquez L; Lorenzo E
    Biosens Bioelectron; 2008 Oct; 24(2):184-90. PubMed ID: 18485689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper(0) nanoparticles supported on silica-coated cobalt ferrite magnetic particles: cost effective catalyst in the hydrolysis of ammonia-borane with an exceptional reusability performance.
    Kaya M; Zahmakiran M; Ozkar S; Volkan M
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3866-73. PubMed ID: 22856878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ facile synthesis of Ru-based core-shell nanoparticles supported on carbon black and their high catalytic activity in the dehydrogenation of amine-boranes.
    Cao N; Su J; Hong X; Luo W; Cheng G
    Chem Asian J; 2014 Feb; 9(2):562-71. PubMed ID: 24288206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retention of enzymatic activity of alpha-amylase in the reductive synthesis of gold nanoparticles.
    Rangnekar A; Sarma TK; Singh AK; Deka J; Ramesh A; Chattopadhyay A
    Langmuir; 2007 May; 23(10):5700-6. PubMed ID: 17425338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ruthenium(0) nanoparticles supported on xonotlite nanowire: a long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane.
    Akbayrak S; Ozkar S
    Dalton Trans; 2014 Jan; 43(4):1797-805. PubMed ID: 24247216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First row transition metal ion-assisted ammonia-borane hydrolysis for hydrogen generation.
    Kalidindi SB; Indirani M; Jagirdar BR
    Inorg Chem; 2008 Aug; 47(16):7424-9. PubMed ID: 18646842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bifunctional catalytic/magnetic Ni@Ru core-shell nanoparticles.
    Chen G; Desinan S; Nechache R; Rosei R; Rosei F; Ma D
    Chem Commun (Camb); 2011 Jun; 47(22):6308-10. PubMed ID: 21509389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. B-N polymer embedded iron(0) nanoparticles as highly active and long lived catalyst in the dehydrogenation of ammonia borane.
    Duman S; Metin O; Ozkar S
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4954-61. PubMed ID: 23901516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced hydrogen release by catalyzed hydrolysis of sodium borohydride-ammonia borane mixtures: a solution-state 11B NMR study.
    Hannauer J; Demirci UB; Geantet C; Herrmann JM; Miele P
    Phys Chem Chem Phys; 2011 Mar; 13(9):3809-18. PubMed ID: 21203622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology.
    Guo S; Dong S; Wang E
    Chemistry; 2008; 14(15):4689-95. PubMed ID: 18384027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.