These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2012831)

  • 1. Permeability of cryptands through dihexadecyl phosphate bilayer membranes.
    Castaing M; Kraus JL; Ponge C
    Biophys Chem; 1991 Jan; 39(1):17-29. PubMed ID: 2012831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of alkali cations through thin lipid membranes by (222)C10-cryptand, an ionizable mobile carrier.
    Castaing M; Morel F; Lehn JM
    J Membr Biol; 1986; 89(3):251-67. PubMed ID: 3701842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency, Na+/K+ selectivity and temperature dependence of ion transport through lipid membranes by (221)C10-cryptand, an ionizable mobile carrier.
    Castaing M; Lehn JM
    J Membr Biol; 1987; 97(2):79-95. PubMed ID: 3446819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na/K competitive transport selectivity of (221)C10-cryptand: effects of pH and carrier concentration.
    Loiseau A; Hill M; Mulliert G; Castaing M
    Biochim Biophys Acta; 1995 Apr; 1235(1):21-32. PubMed ID: 7718604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium transport by an ionizable and a neutral mobile carrier: effects of membrane structure on the apparent activation energy.
    Vareille G; Marion P; Kraus JL; Castaing M
    Biochim Biophys Acta; 1993 Feb; 1146(1):25-37. PubMed ID: 8443224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent effects of cholesterol on sodium transport through lipid membranes by an ionizable mobile carrier.
    Wehrli S; Ramirez C; Kraus JL; Castaing M
    Biochim Biophys Acta; 1992 Jun; 1107(2):319-30. PubMed ID: 1504075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na/K competitive transport selectivity of (221) C10-cryptand: effect of temperature.
    Mulliert G; Hill M; Loiseau A; Castaing M
    Biochim Biophys Acta; 1994 Aug; 1193(2):263-75. PubMed ID: 8054348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of competing Na and K ions by (222) C10-cryptand, an ionizable mobile carrier: effects of pH and temperature.
    Loiseau A; Hill M; René-Corail L; Castaing M
    Biochim Biophys Acta; 1995 Sep; 1238(2):107-17. PubMed ID: 7548125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive permeability of dihexadecylphosphate vesicles altered by aliphatic alcohols and omega-diols.
    Castaing M; Jallon J; Camplo M; Kraus JL
    Pharmacol Res; 1991 Dec; 24(4):357-67. PubMed ID: 1805189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-jump method for studying the fast transport of Na+ by (221) C10-cryptand across lipid membranes.
    Castaing M; Kraus JL; Beaufils P; Ricard J
    Biophys Chem; 1991 Nov; 41(2):203-15. PubMed ID: 1663399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the permeation of dihexadecyl phosphate vesicles by various anesthetics.
    Ménassa PE; Sandorfy C
    Biophys Chem; 1986 Dec; 25(2):175-9. PubMed ID: 3814752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a combined NMR paramagnetic ion-induced line-broadening/dynamic light scattering method for permeability measurements across lipid bilayer membranes.
    Xiang TX; Anderson BD
    J Pharm Sci; 1995 Nov; 84(11):1308-15. PubMed ID: 8587048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the glucose permeation rate across phospholipid bilayers using small unilamellar vesicles. Effect of membrane composition and temperature.
    Bresseleers GJ; Goderis HL; Tobback PP
    Biochim Biophys Acta; 1984 May; 772(3):374-82. PubMed ID: 6722152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory.
    Xiang TX; Anderson BD
    Biophys J; 1997 Jan; 72(1):223-37. PubMed ID: 8994607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of lipid composition on physicochemical characteristics and cytotoxicity of vesicles composed of cationic and anionic dialkyl lipids.
    Chou TH; Liang CH; Lee YC; Yeh LH
    Phys Chem Chem Phys; 2014 Jan; 16(4):1545-53. PubMed ID: 24306211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of new biologically active polypeptides on dihexadecyl phosphate vesicles.
    Kraus JL; Menassa P
    Pharmacol Res Commun; 1987 Jul; 19(7):469-77. PubMed ID: 3671436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barrier properties of glycophorin-phospholipid systems prepared by different methods.
    Van der Steen AT; Taraschi TF; Voorhout WF; De Kruijff B
    Biochim Biophys Acta; 1983 Aug; 733(1):51-64. PubMed ID: 6688359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equations describing passive transport through vesicular membranes.
    Males RG; Phillips PS; Herring FG
    Biophys Chem; 1998 Jan; 70(1):65-74. PubMed ID: 9474763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of the permeation of dihexadecyl phosphate vesicles by various carboxylic acids and some of their tetrazole analogues.
    Pernice P; Castaing M; Ménassa P; Kraus JL
    Biophys Chem; 1988 Oct; 32(1):15-20. PubMed ID: 3233310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural requirements for unsaturated fatty acids and fatty alcohols to induce optimal biological responses: an approach using model membranes.
    Castaing M; Camplo M; Kraus JL
    Res Commun Chem Pathol Pharmacol; 1993 Aug; 81(2):131-50. PubMed ID: 8210693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.