These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2012835)

  • 1. Intensity and anisotropy decays of the tyrosine calmodulin proteolytic fragments, as studied by GHz frequency-domain fluorescence.
    Gryczynski I; Steiner RF; Lakowicz JR
    Biophys Chem; 1991 Jan; 39(1):69-78. PubMed ID: 2012835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency-domain measurements of the rotational dynamics of the tyrosine groups of calmodulin.
    Gryczynski I; Lakowicz JR; Steiner RF
    Biophys Chem; 1988 May; 30(1):49-59. PubMed ID: 3416036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry.
    Lakowicz JR; Laczko G; Gryczynski I
    Biochemistry; 1987 Jan; 26(1):82-90. PubMed ID: 3828310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity and anisotropy decays of [Leu5] enkephalin tyrosyl fluorescence by 10 GHz frequency-domain fluorometry.
    Lakowicz JR; Gryczynski I; Laczko G; Wiczk W
    Biophys Chem; 1993 Jul; 47(1):33-40. PubMed ID: 8364147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction of calmodulin with regulatory peptides of phosphorylase kinase.
    Juminaga D; Albaugh SA; Steiner RF
    J Biol Chem; 1994 Jan; 269(3):1660-7. PubMed ID: 8294413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of calmodulin with the C-terminal M5 peptide of myosin light chain kinase.
    Garone L; Steiner RF
    Arch Biochem Biophys; 1990 Jan; 276(1):12-8. PubMed ID: 2297218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotational modes of Ca2+-liganded calmodulin, as determined by time-domain fluorescence.
    Steiner RF; Norris L
    Biophys Chem; 1987 Jul; 27(1):27-38. PubMed ID: 3607237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolution of the lifetimes and correlation times of the intrinsic tryptophan fluorescence of human hemoglobin solutions using 2 GHz frequency-domain fluorometry.
    Bucci E; Malak H; Fronticelli C; Gryczynski I; Lakowicz JR
    J Biol Chem; 1988 May; 263(15):6972-7. PubMed ID: 3366762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picosecond resolution of oxytocin tyrosyl fluorescence by 2 GHz frequency-domain fluorometry.
    Lakowicz JR; Laczko G; Gryczynski I
    Biophys Chem; 1986 Jul; 24(2):97-100. PubMed ID: 3756310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescence temperature-jump study on Ca2(+)-induced conformational changes in calmodulin.
    Tsuruta H; Sano T
    Biophys Chem; 1990 Jan; 35(1):75-84. PubMed ID: 2328277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexibility involving the intermolecular dityrosyl cross-links of enzymatically polymerized calmodulin.
    Helms MK; Malencik DA; Anderson SR
    Biochemistry; 1998 Jun; 37(23):8378-84. PubMed ID: 9622489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins.
    Yao Y; Squier TC
    Biochemistry; 1996 May; 35(21):6815-27. PubMed ID: 8639633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Static and kinetic studies of complex formations between calmodulin and mastoparanX.
    Murase T; Iio T
    Biochemistry; 2002 Feb; 41(5):1618-29. PubMed ID: 11814356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The determination of the separation of tyrosine-99 and tyrosine-138 in calmodulin: radiationless energy transfer.
    Steiner RF; Motevalli-Alibadi M
    Arch Biochem Biophys; 1984 Nov; 234(2):522-30. PubMed ID: 6497386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence anisotropy decay demonstrates calcium-dependent shape changes in photo-cross-linked calmodulin.
    Small EW; Anderson SR
    Biochemistry; 1988 Jan; 27(1):419-28. PubMed ID: 3349043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural dynamics in the C-terminal domain of calmodulin at low calcium levels.
    Malmendal A; Evenäs J; Forsén S; Akke M
    J Mol Biol; 1999 Nov; 293(4):883-99. PubMed ID: 10543974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of calcium binding on the internal dynamic properties of bovine brain calmodulin, studied by NMR and optical spectroscopy.
    Török K; Lane AN; Martin SR; Janot JM; Bayley PM
    Biochemistry; 1992 Apr; 31(13):3452-62. PubMed ID: 1554727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction of cyclosporin and calmodulin.
    Steiner RF; Albaugh S
    Biopolymers; 1990; 29(6-7):1005-14. PubMed ID: 2369611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic structure of the calmodulin-binding domain of the plasma membrane Ca-ATPase in native erythrocyte ghost membranes.
    Yao Y; Gao J; Squier TC
    Biochemistry; 1996 Sep; 35(37):12015-28. PubMed ID: 8810906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.