BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20129078)

  • 1. Elevation of ceramide in Acetobacter malorum S24 by low pH stress and high temperature stress.
    Ogawa S; Tachimoto H; Kaga T
    J Biosci Bioeng; 2010 Jan; 109(1):32-6. PubMed ID: 20129078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384.
    Alvarez-Ordóñez A; Fernández A; López M; Bernardo A
    Food Microbiol; 2009 May; 26(3):347-53. PubMed ID: 19269580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.
    Gullo M; Giudici P
    Int J Food Microbiol; 2008 Jun; 125(1):46-53. PubMed ID: 18177968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New developments in oxidative fermentation.
    Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases.
    Kanchanarach W; Theeragool G; Yakushi T; Toyama H; Adachi O; Matsushita K
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):741-51. PubMed ID: 19711069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of (13)C-labeled ceramide by acetic acid bacteria and its incorporation in mice.
    Fukami H; Tachimoto H; Kishi M; Kaga T; Waki H; Iwamoto M; Tanaka Y
    J Lipid Res; 2010 Nov; 51(11):3389-95. PubMed ID: 20656918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetic acid production from lactose by an anaerobic thermophilic coculture immobilized in a fibrous-bed bioreactor.
    Talabardon M; Schwitzguébel JP; Péringer P; Yang ST
    Biotechnol Prog; 2000; 16(6):1008-17. PubMed ID: 11101328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of rpoH in Acetobacter pasteurianus NBRC3283.
    Okamoto-Kainuma A; Ishikawa M; Nakamura H; Fukazawa S; Tanaka N; Yamagami K; Koizumi Y
    J Biosci Bioeng; 2011 Apr; 111(4):429-32. PubMed ID: 21239225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of continuous ingestion of acetic Acid bacteria on memory retention and the synaptic function in aged rats.
    Fukami H; Kobayashi S; Tachimoto H; Kishi M; Kaga T; Waki H; Iwamoto M; Tanaka Y
    Biosci Biotechnol Biochem; 2010; 74(7):1498-500. PubMed ID: 20622429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.
    Zheng Y; Zhang R; Yin H; Bai X; Chang Y; Xia M; Wang M
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):7007-7016. PubMed ID: 28770302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of a membrane-bound aldehyde dehydrogenase complex AldFGH in acetic acid fermentation with Acetobacter pasteurianus SKU1108.
    Yakushi T; Fukunari S; Kodama T; Matsutani M; Nina S; Kataoka N; Theeragool G; Matsushita K
    Appl Microbiol Biotechnol; 2018 May; 102(10):4549-4561. PubMed ID: 29616313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetic acid bacteria spoilage of bottled red wine -- a review.
    Bartowsky EJ; Henschke PA
    Int J Food Microbiol; 2008 Jun; 125(1):60-70. PubMed ID: 18237809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by "Clostridium ragsdalei".
    Kundiyana DK; Wilkins MR; Maddipati P; Huhnke RL
    Bioresour Technol; 2011 May; 102(10):5794-9. PubMed ID: 21377362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of process variables in industrial acetic fermentation by a continuous pilot fermentor and response surfaces.
    Garrido-Vidal D; Pizarro C; González-Sáiz JM
    Biotechnol Prog; 2003; 19(5):1468-79. PubMed ID: 14524708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for L-ribulose production.
    Kylmä AK; Granström T; Leisola M
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):584-91. PubMed ID: 12898066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti.
    Nakano S; Fukaya M; Horinouchi S
    FEMS Microbiol Lett; 2004 Jun; 235(2):315-22. PubMed ID: 15183880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus.
    Yin H; Zhang R; Xia M; Bai X; Mou J; Zheng Y; Wang M
    Microb Cell Fact; 2017 Jun; 16(1):109. PubMed ID: 28619110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Growth of a turbidostatic culture of yeast under conditions of thermal stress at various pH's of the media].
    Kaliuzhin VA
    Mikrobiologiia; 1989; 58(4):591-5. PubMed ID: 2695798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.
    Alvarez-Ordóñez A; Fernández A; Bernardo A; López M
    Food Microbiol; 2010 Feb; 27(1):44-9. PubMed ID: 19913691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetic acid fermentation of acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation.
    Kanchanarach W; Theeragool G; Inoue T; Yakushi T; Adachi O; Matsushita K
    Biosci Biotechnol Biochem; 2010; 74(8):1591-7. PubMed ID: 20699583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.