These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 20129777)

  • 61. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.
    Lam MK; Lee KT; Mohamed AR
    Biotechnol Adv; 2010; 28(4):500-18. PubMed ID: 20362044
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Moringa oleifera oil: a possible source of biodiesel.
    Rashid U; Anwar F; Moser BR; Knothe G
    Bioresour Technol; 2008 Nov; 99(17):8175-9. PubMed ID: 18474424
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biodiesel production from vegetable oil and waste animal fats in a pilot plant.
    Alptekin E; Canakci M; Sanli H
    Waste Manag; 2014 Nov; 34(11):2146-54. PubMed ID: 25151441
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Two-step preparation for catalyst-free biodiesel fuel production: hydrolysis and methyl esterification.
    Kusdiana D; Saka S
    Appl Biochem Biotechnol; 2004; 113-116():781-91. PubMed ID: 15054232
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Variables affecting the reactivity of acid-catalyzed transesterification of vegetable oil with methanol.
    Furukawa S; Uehara Y; Yamasaki H
    Bioresour Technol; 2010 May; 101(10):3325-32. PubMed ID: 20089399
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optimisation of biodiesel production by sunflower oil transesterification.
    Antolín G; Tinaut FV; Briceño Y; Castaño V; Pérez C; Ramírez AI
    Bioresour Technol; 2002 Jun; 83(2):111-4. PubMed ID: 12056485
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Acceleration of catalytic activity of calcium oxide for biodiesel production.
    Kawashima A; Matsubara K; Honda K
    Bioresour Technol; 2009 Jan; 100(2):696-700. PubMed ID: 18684617
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production.
    Kumar R; Kumar GR; Chandrashekar N
    Bioresour Technol; 2011 Jun; 102(11):6617-20. PubMed ID: 21482464
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes.
    Kuo TC; Shaw JF; Lee GC
    Bioresour Technol; 2015 Sep; 192():54-9. PubMed ID: 26011691
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ultrasound assisted production of fatty acid methyl esters from transesterification of triglycerides with methanol in the presence of KOH catalyst: optimization, mechanism and kinetics.
    Thanh le T; Okitsu K; Maeda Y; Bandow H
    Ultrason Sonochem; 2014 Mar; 21(2):467-71. PubMed ID: 24161255
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ultrasonic biodiesel synthesis from crude Jatropha curcas oil with heterogeneous base catalyst: mechanistic insight and statistical optimization.
    Choudhury HA; Goswami PP; Malani RS; Moholkar VS
    Ultrason Sonochem; 2014 May; 21(3):1050-64. PubMed ID: 24284543
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Catalytic Transesterification of Starch with Plant Oils: A Sustainable and Efficient Route to Fatty Acid Starch Esters.
    Söyler Z; Meier MA
    ChemSusChem; 2017 Jan; 10(1):182-188. PubMed ID: 27874272
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion.
    Chen L; Liu T; Zhang W; Chen X; Wang J
    Bioresour Technol; 2012 May; 111():208-14. PubMed ID: 22401712
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Palm-Based Neopentyl Glycol Diester: A Potential Green Insulating Oil.
    Raof NA; Yunus R; Rashid U; Azis N; Yaakub Z
    Protein Pept Lett; 2018; 25(2):171-179. PubMed ID: 29359647
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Study of effects of some reaction conditions on ethanolysis of rapeseed oil with dispergation.
    Cernoch M; Hájek M; Skopal F
    Bioresour Technol; 2010 Feb; 101(4):1213-9. PubMed ID: 19800222
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optimization of ethyl ester production assisted by ultrasonic irradiation.
    Noipin K; Kumar S
    Ultrason Sonochem; 2015 Jan; 22():548-58. PubMed ID: 25116594
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Lipase-catalyzed synthesis of isosorbide monoricinoleate: process optimization by response surface methodology.
    El Boulifi N; Aracil J; Martínez M
    Bioresour Technol; 2010 Nov; 101(22):8520-5. PubMed ID: 20638275
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synthesis and characterization of vegetable oil derived esters: evaluation for their diesel additive properties.
    Dmytryshyn SL; Dalai AK; Chaudhari ST; Mishra HK; Reaney MJ
    Bioresour Technol; 2004 Mar; 92(1):55-64. PubMed ID: 14643986
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The transesterification of rapeseed and waste sunflower oils: Mass-transfer and kinetics in a laboratory batch reactor and in an industrial-scale reactor/separator setup.
    Klofutar B; Golob J; Likozar B; Klofutar C; Zagar E; Poljansek I
    Bioresour Technol; 2010 May; 101(10):3333-44. PubMed ID: 20116241
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Environmentally friendly processes from coffee wastes to trimethylolpropane esters to be considered biolubricants.
    Unugul T; Kutluk T; Gürkaya Kutluk B; Kapucu N
    J Air Waste Manag Assoc; 2020 Nov; 70(11):1198-1215. PubMed ID: 32644908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.