These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 20129848)

  • 21. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics.
    Nguyen PQ; Yeo LP; Lok BK; Lam YC
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4011-6. PubMed ID: 24571607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronics for a high temperature superconducting receiver system for magnetic resonance microimaging.
    Black RD; Roemer PB; Mueller OM
    IEEE Trans Biomed Eng; 1994 Feb; 41(2):195-7. PubMed ID: 8026853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
    Wu A; Wang L; Jensen E; Mathies R; Boser B
    Lab Chip; 2010 Feb; 10(4):519-21. PubMed ID: 20126694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Screen-printed flexible MRI receive coils.
    Corea JR; Flynn AM; Lechêne B; Scott G; Reed GD; Shin PJ; Lustig M; Arias AC
    Nat Commun; 2016 Mar; 7():10839. PubMed ID: 26961073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inkjet printing of single-walled carbon nanotubes and electrical characterization of the line pattern.
    Song JW; Kim J; Yoon YH; Choi BS; Kim JH; Han CS
    Nanotechnology; 2008 Mar; 19(9):095702. PubMed ID: 21817684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes.
    Azoubel S; Shemesh S; Magdassi S
    Nanotechnology; 2012 Aug; 23(34):344003. PubMed ID: 22885854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A compact inductive position sensor made by inkjet printing technology on a flexible substrate.
    Jeranče N; Vasiljević D; Samardžić N; Stojanović G
    Sensors (Basel); 2012; 12(2):1288-98. PubMed ID: 22438710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superconducting receiver coils for sodium magnetic resonance imaging.
    Miller JR; Zhang K; Ma QY; Mun IK; Jung KJ; Katz J; Face DW; Kountz DJ
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1197-9. PubMed ID: 9214839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multi-slot surface coil for MRI of dual-rat imaging at 4 T.
    Solis SE; Wang R; Tomasi D; Rodriguez AO
    Phys Med Biol; 2011 Jun; 56(12):3551-61. PubMed ID: 21606551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by "coffee ring effect".
    Shimoni A; Azoubel S; Magdassi S
    Nanoscale; 2014 Oct; 6(19):11084-9. PubMed ID: 25014193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 128-channel body MRI with a flexible high-density receiver-coil array.
    Hardy CJ; Giaquinto RO; Piel JE; Rohling KW; Marinelli L; Blezek DJ; Fiveland EW; Darrow RD; Foo TK
    J Magn Reson Imaging; 2008 Nov; 28(5):1219-25. PubMed ID: 18972330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation.
    Kozlov M; Turner R
    J Magn Reson; 2009 Sep; 200(1):147-52. PubMed ID: 19570700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled E-field gradient coils for MRI.
    Mansfield P; Haywood B
    Phys Med Biol; 2008 Apr; 53(7):1811-27. PubMed ID: 18364540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic resonance microscopy of spinal cord injury in mouse using a miniaturized implantable RF coil.
    Bilgen M
    J Neurosci Methods; 2007 Jan; 159(1):93-7. PubMed ID: 16890294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method.
    Wang S; Duyn JH
    Phys Med Biol; 2006 Jun; 51(12):3211-29. PubMed ID: 16757872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A realization of digital wireless transmission for MRI signals based on 802.11b.
    Wei J; Liu Z; Chai Z; Yuan J; Lian J; Shen GX
    J Magn Reson; 2007 Jun; 186(2):358-63. PubMed ID: 17433744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A birdcage coil tuned by RF shielding for application at 9.4 T.
    Dardzinski BJ; Li S; Collins CM; Williams GD; Smith MB
    J Magn Reson; 1998 Mar; 131(1):32-8. PubMed ID: 9533903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Printed Graphene Derivative Circuits as Passive Electrical Filters.
    Sinar D; Knopf GK
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29473890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An inverse design of an open, head/neck RF coil for MRI.
    Lawrence BG; Crozier S; Cowin G; Yau DD
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1024-30. PubMed ID: 12214874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembling surface mounted components on ink-jet printed double sided paper circuit board.
    Andersson HA; Manuilskiy A; Haller S; Hummelgård M; Sidén J; Hummelgård C; Olin H; Nilsson HE
    Nanotechnology; 2014 Mar; 25(9):094002. PubMed ID: 24521824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.