These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20129850)

  • 21. A decision support system for automatic screening of non-proliferative diabetic retinopathy.
    Reza AW; Eswaran C
    J Med Syst; 2011 Feb; 35(1):17-24. PubMed ID: 20703589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis.
    Sánchez CI; Hornero R; López MI; Aboy M; Poza J; Abásolo D
    Med Eng Phys; 2008 Apr; 30(3):350-7. PubMed ID: 17556004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic detection of microaneurysms and hemorrhages in digital fundus images.
    Kande GB; Savithri TS; Subbaiah PV
    J Digit Imaging; 2010 Aug; 23(4):430-7. PubMed ID: 19921335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multimedia data mining for automatic diabetic retinopathy screening.
    Quellec G; Lamard M; Cochener B; Decencière E; Lay B; Chabouis A; Roux C; Cazuguel G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7144-7. PubMed ID: 24111392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic detection of microaneurysms in color fundus images.
    Walter T; Massin P; Erginay A; Ordonez R; Jeulin C; Klein JC
    Med Image Anal; 2007 Dec; 11(6):555-66. PubMed ID: 17950655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of hard exudates in retinal images using a radial basis function classifier.
    García M; Sánchez CI; Poza J; López MI; Hornero R
    Ann Biomed Eng; 2009 Jul; 37(7):1448-63. PubMed ID: 19430906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal wavelet transform for the detection of microaneurysms in retina photographs.
    Quellec G; Lamard M; Josselin PM; Cazuguel G; Cochener B; Roux C
    IEEE Trans Med Imaging; 2008 Sep; 27(9):1230-41. PubMed ID: 18779064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of neovascularization based on fractal and texture analysis with interaction effects in diabetic retinopathy.
    Lee J; Zee BC; Li Q
    PLoS One; 2013; 8(12):e75699. PubMed ID: 24358105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comprehensive diagnosis system for early signs and different diabetic retinopathy grades using fundus retinal images based on pathological changes detection.
    AbdelMaksoud E; Barakat S; Elmogy M
    Comput Biol Med; 2020 Nov; 126():104039. PubMed ID: 33068807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Automatic detection of microaneurysms in colour fundus images].
    Jiménez S; Alemany P; Núñez Benjumea F; Serrano C; Acha B; Fondón I; Carral F; Sánchez C
    Arch Soc Esp Oftalmol; 2011 Sep; 86(9):277-81. PubMed ID: 21893260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep image mining for diabetic retinopathy screening.
    Quellec G; Charrière K; Boudi Y; Cochener B; Lamard M
    Med Image Anal; 2017 Jul; 39():178-193. PubMed ID: 28511066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Segmentation of retinal blood vessels by a novel hybrid technique- Principal Component Analysis (PCA) and Contrast Limited Adaptive Histogram Equalization (CLAHE).
    Sidhu RK; Sachdeva J; Katoch D
    Microvasc Res; 2023 Jul; 148():104477. PubMed ID: 36746364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 2D alpha-shapes to quantify retinal microvasculature morphology and their application to proliferative diabetic retinopathy characterisation in fundus photographs.
    Pead E; Giarratano Y; Tatham AJ; Bernabeu MO; Dhillon B; Trucco E; MacGillivray T
    Sci Rep; 2021 Nov; 11(1):22814. PubMed ID: 34819594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two years fluorescein follow-up of diabetic microaneurysms.
    Ferrer O
    Ophthalmologica; 1967; 154(1):6-20. PubMed ID: 6059594
    [No Abstract]   [Full Text] [Related]  

  • 35. Detection of exudates in retinal images using a pure splitting technique.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6745-8. PubMed ID: 21095830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of suitable fundus images using automated quality assessment methods.
    Şevik U; Köse C; Berber T; Erdöl H
    J Biomed Opt; 2014 Apr; 19(4):046006. PubMed ID: 24718384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
    Akyol K; Şen B; Bayır Ş
    Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel method for retinal exudate segmentation using signal separation algorithm.
    Imani E; Pourreza HR
    Comput Methods Programs Biomed; 2016 Sep; 133():195-205. PubMed ID: 27393810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening.
    Seoud L; Hurtut T; Chelbi J; Cheriet F; Langlois JM
    IEEE Trans Med Imaging; 2016 Apr; 35(4):1116-26. PubMed ID: 26701180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.