These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 20129851)
1. Classification of benign and malignant breast tumors by 2-d analysis based on contour description and scatterer characterization. Tsui PH; Liao YY; Chang CC; Kuo WH; Chang KJ; Yeh CK IEEE Trans Med Imaging; 2010 Feb; 29(2):513-22. PubMed ID: 20129851 [TBL] [Abstract][Full Text] [Related]
2. Ultrasonic Nakagami imaging: a strategy to visualize the scatterer properties of benign and malignant breast tumors. Tsui PH; Yeh CK; Liao YY; Chang CC; Kuo WH; Chang KJ; Chen CN Ultrasound Med Biol; 2010 Feb; 36(2):209-17. PubMed ID: 20018436 [TBL] [Abstract][Full Text] [Related]
3. Classification of scattering media within benign and malignant breast tumors based on ultrasound texture-feature-based and Nakagami-parameter images. Liao YY; Tsui PH; Li CH; Chang KJ; Kuo WH; Chang CC; Yeh CK Med Phys; 2011 Apr; 38(4):2198-207. PubMed ID: 21626954 [TBL] [Abstract][Full Text] [Related]
5. Breast tumor classification using different features of quantitative ultrasound parametric images. Hsu SM; Kuo WH; Kuo FC; Liao YY Int J Comput Assist Radiol Surg; 2019 Apr; 14(4):623-633. PubMed ID: 30617720 [TBL] [Abstract][Full Text] [Related]
6. Classification of breast masses in ultrasonic B-mode images using a compounding technique in the Nakagami distribution domain. Shankar PM; Dumane VA; Piccoli CW; Reid JM; Forsberg F; Goldberg BB Ultrasound Med Biol; 2002 Oct; 28(10):1295-300. PubMed ID: 12467856 [TBL] [Abstract][Full Text] [Related]
7. Strain-compounding technique with ultrasound Nakagami imaging for distinguishing between benign and malignant breast tumors. Liao YY; Li CH; Tsui PH; Chang CC; Kuo WH; Chang KJ; Yeh CK Med Phys; 2012 May; 39(5):2325-33. PubMed ID: 22559602 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided diagnosis based on speckle patterns in ultrasound images. Moon WK; Lo CM; Huang CS; Chen JH; Chang RF Ultrasound Med Biol; 2012 Jul; 38(7):1251-61. PubMed ID: 22579548 [TBL] [Abstract][Full Text] [Related]
9. Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images. Moon WK; Shen YW; Huang CS; Chiang LR; Chang RF Ultrasound Med Biol; 2011 Apr; 37(4):539-48. PubMed ID: 21420580 [TBL] [Abstract][Full Text] [Related]
10. Classification of ultrasonic B mode images of the breast using frequency diversity and Nakagami statistics. Dumane VA; Shankar PM; Piccoli CW; Reid JM; Genis V; Forsberg F; Goldberg BB IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):664-8. PubMed ID: 12046943 [TBL] [Abstract][Full Text] [Related]
11. Classification of ultrasonic B-mode images of breast masses using Nakagami distribution. Shankar PM; Dumane VA; Reid JM; Genis V; Forsberg F; Piccoli CW; Goldberg BB IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):569-80. PubMed ID: 11370371 [TBL] [Abstract][Full Text] [Related]
12. Malignant and benign breast tissue classification performance using a scatterer structure preclassifier. Donohue KD; Huang L; Georgiou G; Cohen FS; Piccoli CW; Forsberg F IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jun; 50(6):724-9. PubMed ID: 12839186 [TBL] [Abstract][Full Text] [Related]
13. Computerized characterization of breast masses on three-dimensional ultrasound volumes. Sahiner B; Chan HP; Roubidoux MA; Helvie MA; Hadjiiski LM; Ramachandran A; Paramagul C; LeCarpentier GL; Nees A; Blane C Med Phys; 2004 Apr; 31(4):744-54. PubMed ID: 15124991 [TBL] [Abstract][Full Text] [Related]
14. Usefulness of combined BI-RADS analysis and Nakagami statistics of ultrasound echoes in the diagnosis of breast lesions. Dobruch-Sobczak K; Piotrzkowska-Wróblewska H; Roszkowska-Purska K; Nowicki A; Jakubowski W Clin Radiol; 2017 Apr; 72(4):339.e7-339.e15. PubMed ID: 28038779 [TBL] [Abstract][Full Text] [Related]
15. Computer-aided classification of breast masses in ultrasonic B-scans using a multiparameter approach. Shankar PM; Dumane VA; Piccoli CW; Reid JM; Forsberg F; Goldberg BB IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Aug; 50(8):1002-9. PubMed ID: 12952091 [TBL] [Abstract][Full Text] [Related]
16. Use of nakagami statistics and empirical mode decomposition for ultrasound tissue characterization by a nonfocused transducer. Tsui PH; Chang CC; Ho MC; Lee YH; Chen YS; Chang CC; Huang NE; Wu ZH; Chang KJ Ultrasound Med Biol; 2009 Dec; 35(12):2055-68. PubMed ID: 19828227 [TBL] [Abstract][Full Text] [Related]
17. Bimodal Multiparameter-Based Approach for Benign-Malignant Classification of Breast Tumors. Ara SR; Alam F; Rahman MH; Akhter S; Awwal R; Hasan K Ultrasound Med Biol; 2015 Jul; 41(7):2022-38. PubMed ID: 25913281 [TBL] [Abstract][Full Text] [Related]
18. Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study. Tsui PH; Yeh CK; Chang CC; Liao YY Phys Med Biol; 2008 Nov; 53(21):6027-44. PubMed ID: 18836223 [TBL] [Abstract][Full Text] [Related]
19. Classification of breast mass lesions using model-based analysis of the characteristic kinetic curve derived from fuzzy c-means clustering. Chang YC; Huang YH; Huang CS; Chang PK; Chen JH; Chang RF Magn Reson Imaging; 2012 Apr; 30(3):312-22. PubMed ID: 22245697 [TBL] [Abstract][Full Text] [Related]
20. Classification of breast masses in ultrasonic B scans using Nakagami and K distributions. Shankar PM; Dumane VA; George T; Piccoli CW; Reid JM; Forsberg F; Goldberg BB Phys Med Biol; 2003 Jul; 48(14):2229-40. PubMed ID: 12894981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]