These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 20129931)
1. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues. Palovaara J; Hallberg H; Stasolla C; Luit B; Hakman I Tree Physiol; 2010 Apr; 30(4):479-89. PubMed ID: 20129931 [TBL] [Abstract][Full Text] [Related]
2. The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development. Hakman I; Hallberg H; Palovaara J Tree Physiol; 2009 Apr; 29(4):483-96. PubMed ID: 19203973 [TBL] [Abstract][Full Text] [Related]
3. Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. Palovaara J; Hallberg H; Stasolla C; Hakman I New Phytol; 2010 Oct; 188(1):122-35. PubMed ID: 20561212 [TBL] [Abstract][Full Text] [Related]
4. Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons. Larsson E; Sundström JF; Sitbon F; von Arnold S Ann Bot; 2012 Sep; 110(4):923-34. PubMed ID: 22778149 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of HBK3, a class I KNOX homeobox gene, improves the development of Norway spruce (Picea abies) somatic embryos. Belmonte MF; Tahir M; Schroeder D; Stasolla C J Exp Bot; 2007; 58(11):2851-61. PubMed ID: 17617659 [TBL] [Abstract][Full Text] [Related]
6. KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Izhaki A; Bowman JL Plant Cell; 2007 Feb; 19(2):495-508. PubMed ID: 17307928 [TBL] [Abstract][Full Text] [Related]
7. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Friml J; Yang X; Michniewicz M; Weijers D; Quint A; Tietz O; Benjamins R; Ouwerkerk PB; Ljung K; Sandberg G; Hooykaas PJ; Palme K; Offringa R Science; 2004 Oct; 306(5697):862-5. PubMed ID: 15514156 [TBL] [Abstract][Full Text] [Related]
8. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Treml BS; Winderl S; Radykewicz R; Herz M; Schweizer G; Hutzler P; Glawischnig E; Ruiz RA Development; 2005 Sep; 132(18):4063-74. PubMed ID: 16107478 [TBL] [Abstract][Full Text] [Related]
9. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Friml J; Vieten A; Sauer M; Weijers D; Schwarz H; Hamann T; Offringa R; Jürgens G Nature; 2003 Nov; 426(6963):147-53. PubMed ID: 14614497 [TBL] [Abstract][Full Text] [Related]
10. Expression of the viviparous 1 (Pavp1) and p34cdc2 protein kinase (cdc2Pa) genes during somatic embryogenesis in Norway spruce (Picea abies [L.] Karst). Footitt S; Ingouff M; Clapham D; von Arnold S J Exp Bot; 2003 Jul; 54(388):1711-9. PubMed ID: 12754264 [TBL] [Abstract][Full Text] [Related]
11. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Zádníková P; Petrásek J; Marhavy P; Raz V; Vandenbussche F; Ding Z; Schwarzerová K; Morita MT; Tasaka M; Hejátko J; Van Der Straeten D; Friml J; Benková E Development; 2010 Feb; 137(4):607-17. PubMed ID: 20110326 [TBL] [Abstract][Full Text] [Related]
12. Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. Larsson E; Sitbon F; Ljung K; Von Arnold S New Phytol; 2008; 177(2):356-366. PubMed ID: 18042199 [TBL] [Abstract][Full Text] [Related]
13. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Xu M; Zhu L; Shou H; Wu P Plant Cell Physiol; 2005 Oct; 46(10):1674-81. PubMed ID: 16085936 [TBL] [Abstract][Full Text] [Related]
14. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Blilou I; Xu J; Wildwater M; Willemsen V; Paponov I; Friml J; Heidstra R; Aida M; Palme K; Scheres B Nature; 2005 Jan; 433(7021):39-44. PubMed ID: 15635403 [TBL] [Abstract][Full Text] [Related]
15. The molecular characterization of PaHB2, a homeobox gene of the HD-GL2 family expressed during embryo development in Norway spruce. Ingouff M; Farbos I; Wiweger M; von Arnold S J Exp Bot; 2003 May; 54(386):1343-50. PubMed ID: 12709480 [TBL] [Abstract][Full Text] [Related]
16. RopGEF1 Plays a Critical Role in Polar Auxin Transport in Early Development. Liu Y; Dong Q; Kita D; Huang JB; Liu G; Wu X; Zhu X; Cheung AY; Wu HM; Tao LZ Plant Physiol; 2017 Sep; 175(1):157-171. PubMed ID: 28698357 [TBL] [Abstract][Full Text] [Related]
17. Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. Scacchi E; Osmont KS; Beuchat J; Salinas P; Navarrete-Gómez M; Trigueros M; Ferrándiz C; Hardtke CS Development; 2009 Jun; 136(12):2059-67. PubMed ID: 19465596 [TBL] [Abstract][Full Text] [Related]
19. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2). Niu Y; Jin C; Jin G; Zhou Q; Lin X; Tang C; Zhang Y Plant Cell Environ; 2011 Aug; 34(8):1304-17. PubMed ID: 21477123 [TBL] [Abstract][Full Text] [Related]
20. Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. de Billy F; Grosjean C; May S; Bennett M; Cullimore JV Mol Plant Microbe Interact; 2001 Mar; 14(3):267-77. PubMed ID: 11277424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]