These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20129947)

  • 1. Vortex interactions with flapping wings and fins can be unpredictable.
    Lentink D; Van Heijst GF; Muijres FT; Van Leeuwen JL
    Biol Lett; 2010 Jun; 6(3):394-7. PubMed ID: 20129947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vortex-wake interactions of a flapping foil that models animal swimming and flight.
    Lentink D; Muijres FT; Donker-Duyvis FJ; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):267-73. PubMed ID: 18165254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient cruising for swimming and flying animals is dictated by fluid drag.
    Floryan D; Van Buren T; Smits AJ
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8116-8118. PubMed ID: 29915088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of the vortex wakes of flying and swimming vertebrates.
    Rayner JM
    Symp Soc Exp Biol; 1995; 49():131-55. PubMed ID: 8571221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight.
    Lee YJ; Lua KB
    Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional vortex wake structure of flapping wings in hovering flight.
    Cheng B; Roll J; Liu Y; Troolin DR; Deng X
    J R Soc Interface; 2014 Feb; 11(91):20130984. PubMed ID: 24335561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.
    Horstmann JT; Henningsson P; Thomas AL; Bomphrey RJ
    PLoS One; 2014; 9(3):e91040. PubMed ID: 24632825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics.
    Gutierrez E; Quinn DB; Chin DD; Lentink D
    Bioinspir Biomim; 2016 Dec; 12(1):016004. PubMed ID: 27921999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ground effect on the aerodynamics of three-dimensional hovering wings.
    Lu H; Lua KB; Lee YJ; Lim TT; Yeo KS
    Bioinspir Biomim; 2016 Oct; 11(6):066003. PubMed ID: 27780156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experiments and numerical simulations on hovering three-dimensional flexible flapping wings.
    Diaz-Arriba D; Jardin T; Gourdain N; Pons F; David L
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36055251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight.
    Birch JM; Dickinson MH
    J Exp Biol; 2003 Jul; 206(Pt 13):2257-72. PubMed ID: 12771174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axial propulsion with flapping and rotating wings, a comparison of potential efficiency.
    Kroninger CM
    Bioinspir Biomim; 2018 Apr; 13(3):036012. PubMed ID: 29461251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hovering flight in hummingbird hawkmoths: kinematics, wake dynamics and aerodynamic power.
    Warfvinge K; Johansson LC; Hedenström A
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 34042974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency tuning in animal locomotion.
    Ahlborn BK; Blake RW; Megill WM
    Zoology (Jena); 2006; 109(1):43-53. PubMed ID: 16403613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elytra boost lift, but reduce aerodynamic efficiency in flying beetles.
    Johansson LC; Engel S; Baird E; Dacke M; Muijres FT; Hedenström A
    J R Soc Interface; 2012 Oct; 9(75):2745-8. PubMed ID: 22593097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers.
    Birch JM; Dickson WB; Dickinson MH
    J Exp Biol; 2004 Mar; 207(Pt 7):1063-72. PubMed ID: 14978049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volumetric visualization of the near- and far-field wake in flapping wings.
    Liu Y; Cheng B; Barbera G; Troolin DR; Deng X
    Bioinspir Biomim; 2013 Sep; 8(3):036010. PubMed ID: 23924871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.