These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 20130196)

  • 1. Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ.
    Chouhan AK; Zhang J; Zinsmaier KE; Macleod GT
    J Neurosci; 2010 Feb; 30(5):1869-81. PubMed ID: 20130196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals.
    David G; Barrett EF
    J Physiol; 2003 Apr; 548(Pt 2):425-38. PubMed ID: 12588898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity.
    Chouhan AK; Ivannikov MV; Lu Z; Sugimori M; Llinas RR; Macleod GT
    J Neurosci; 2012 Jan; 32(4):1233-43. PubMed ID: 22279208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of mitochondrial Ca2+ uptake affects phasic release from motor terminals differently depending on external [Ca2+].
    Talbot JD; David G; Barrett EF
    J Neurophysiol; 2003 Jul; 90(1):491-502. PubMed ID: 12672777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative estimate of mitochondrial [Ca2+] in stimulated motor nerve terminals.
    David G; Talbot J; Barrett EF
    Cell Calcium; 2003 Mar; 33(3):197-206. PubMed ID: 12600806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of mitochondrial dysfunction in the Ca2+-induced decline of transmitter release at K+-depolarized motor neuron terminals.
    Calupca MA; Hendricks GM; Hardwick JC; Parsons RL
    J Neurophysiol; 1999 Feb; 81(2):498-506. PubMed ID: 10036254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repetitive nerve stimulation transiently opens the mitochondrial permeability transition pore in motor nerve terminals of symptomatic mutant SOD1 mice.
    Nguyen KT; Barrett JN; García-Chacón L; David G; Barrett EF
    Neurobiol Dis; 2011 Jun; 42(3):381-90. PubMed ID: 21310237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation-evoked increases in cytosolic [Ca(2+)] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent.
    David G; Barrett EF
    J Neurosci; 2000 Oct; 20(19):7290-6. PubMed ID: 11007886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic vesicles: test for a role in presynaptic calcium regulation.
    Macleod GT; Marin L; Charlton MP; Atwood HL
    J Neurosci; 2004 Mar; 24(10):2496-505. PubMed ID: 15014125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of mitochondrion on calcium transients at intact presynaptic terminals depend on frequency of nerve firing.
    Peng YY
    J Neurophysiol; 1998 Jul; 80(1):186-95. PubMed ID: 9658040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium is reduced in presynaptic mitochondria of motor nerve terminals during neurotransmission in SMA mice.
    Lopez-Manzaneda M; Franco-Espin J; Tejero R; Cano R; Tabares L
    Hum Mol Genet; 2021 May; 30(8):629-643. PubMed ID: 33693569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Psi(m) depolarization that accompanies mitochondrial Ca2+ uptake is greater in mutant SOD1 than in wild-type mouse motor terminals.
    Nguyen KT; García-Chacón LE; Barrett JN; Barrett EF; David G
    Proc Natl Acad Sci U S A; 2009 Feb; 106(6):2007-11. PubMed ID: 19174508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrusion of Ca2+ from mouse motor terminal mitochondria via a Na+-Ca2+ exchanger increases post-tetanic evoked release.
    García-Chacón LE; Nguyen KT; David G; Barrett EF
    J Physiol; 2006 Aug; 574(Pt 3):663-75. PubMed ID: 16613870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in Ca2+ regulation for high-output Is and low-output Ib motor terminals in Drosophila larvae.
    He T; Singh V; Rumpal N; Lnenicka GA
    Neuroscience; 2009 Apr; 159(4):1283-91. PubMed ID: 19409207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial phosphagen kinases support the volatile power demands of motor nerve terminals.
    Justs KA; Sempertegui S; Riboul DV; Oliva CD; Durbin RJ; Crill S; Stawarski M; Su C; Renden RB; Fily Y; Macleod GT
    J Physiol; 2023 Dec; 601(24):5705-5732. PubMed ID: 37942946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic glutamate levels in tonic and phasic motor axons correlate with properties of synaptic release.
    Shupliakov O; Atwood HL; Ottersen OP; Storm-Mathisen J; Brodin L
    J Neurosci; 1995 Nov; 15(11):7168-80. PubMed ID: 7472471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses.
    Guo X; Macleod GT; Wellington A; Hu F; Panchumarthi S; Schoenfield M; Marin L; Charlton MP; Atwood HL; Zinsmaier KE
    Neuron; 2005 Aug; 47(3):379-93. PubMed ID: 16055062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic Mitochondrial Volume and Packing Density Scale with Presynaptic Power Demand.
    Justs KA; Lu Z; Chouhan AK; Borycz JA; Lu Z; Meinertzhagen IA; Macleod GT
    J Neurosci; 2022 Feb; 42(6):954-967. PubMed ID: 34907026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses.
    Billups B; Forsythe ID
    J Neurosci; 2002 Jul; 22(14):5840-7. PubMed ID: 12122046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling Synaptic GCaMP Signals: Differential Excitability and Clearance Mechanisms Underlying Distinct Ca
    Xing X; Wu CF
    eNeuro; 2018; 5(1):. PubMed ID: 29464198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.