These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20130201)

  • 1. The effect of spatially inhomogeneous extracellular electric fields on neurons.
    Anastassiou CA; Montgomery SM; Barahona M; Buzsáki G; Koch C
    J Neurosci; 2010 Feb; 30(5):1925-36. PubMed ID: 20130201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic moment analysis of the extracellular electric field of a biologically realistic spiking neuron.
    Milstein JN; Koch C
    Neural Comput; 2008 Aug; 20(8):2070-84. PubMed ID: 18386982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical interactions via the extracellular potential near cell bodies.
    Holt GR; Koch C
    J Comput Neurosci; 1999; 6(2):169-84. PubMed ID: 10333161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ephaptic coupling of cortical neurons.
    Anastassiou CA; Perin R; Markram H; Koch C
    Nat Neurosci; 2011 Feb; 14(2):217-23. PubMed ID: 21240273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ephaptically generated potentials in CA1 neurons of rat's hippocampus in situ.
    Yim CC; Krnjević K; Dalkara T
    J Neurophysiol; 1986 Jul; 56(1):99-122. PubMed ID: 3746402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices.
    Ghai RS; Bikson M; Durand DM
    J Neurophysiol; 2000 Jul; 84(1):274-80. PubMed ID: 10899202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated and externally imposed electric fields.
    Agudelo-Toro A; Neef A
    J Neural Eng; 2013 Apr; 10(2):026019. PubMed ID: 23503026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular DC electric fields induce nonuniform membrane polarization in rat hippocampal CA1 pyramidal neurons.
    Akiyama H; Shimizu Y; Miyakawa H; Inoue M
    Brain Res; 2011 Apr; 1383():22-35. PubMed ID: 21295559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea-pig CA3 hippocampal slices.
    Murakami S; Zhang T; Hirose A; Okada YC
    J Physiol; 2002 Oct; 544(Pt 1):237-51. PubMed ID: 12356895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling extracellular space electrodiffusion during Leão's spreading depression.
    Almeida AC; Texeira HZ; Duarte MA; Infantosi AF
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):450-8. PubMed ID: 15000376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic and synaptic mechanisms determining the timing of neuron population activity during hippocampal theta oscillation.
    Orbán G; Kiss T; Erdi P
    J Neurophysiol; 2006 Dec; 96(6):2889-904. PubMed ID: 16899632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow periodic activity in the longitudinal hippocampal slice can self-propagate non-synaptically by a mechanism consistent with ephaptic coupling.
    Chiang CC; Shivacharan RS; Wei X; Gonzalez-Reyes LE; Durand DM
    J Physiol; 2019 Jan; 597(1):249-269. PubMed ID: 30295923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space.
    Bédard C; Kröger H; Destexhe A
    Biophys J; 2004 Mar; 86(3):1829-42. PubMed ID: 14990509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of electrical coupling between pyramidal cells.
    Vigmond EJ; Perez Velazquez JL; Valiante TA; Bardakjian BL; Carlen PL
    J Neurophysiol; 1997 Dec; 78(6):3107-16. PubMed ID: 9405530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling extracellular fields for a three-dimensional network of cells using NEURON.
    Appukuttan S; Brain KL; Manchanda R
    J Neurosci Methods; 2017 Oct; 290():27-38. PubMed ID: 28705695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field effects in hyperexcitable neural tissue: a review.
    Durand DM
    Radiat Prot Dosimetry; 2003; 106(4):325-31. PubMed ID: 14690275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending Integrate-and-Fire Model Neurons to Account for the Effects of Weak Electric Fields and Input Filtering Mediated by the Dendrite.
    Aspart F; Ladenbauer J; Obermayer K
    PLoS Comput Biol; 2016 Nov; 12(11):e1005206. PubMed ID: 27893786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields.
    Deans JK; Powell AD; Jefferys JG
    J Physiol; 2007 Sep; 583(Pt 2):555-65. PubMed ID: 17599962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural recruitment by ephaptic coupling in epilepsy.
    Shivacharan RS; Chiang CC; Wei X; Subramanian M; Couturier NH; Pakalapati N; Durand DM
    Epilepsia; 2021 Jul; 62(7):1505-1517. PubMed ID: 33979453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem.
    Goldwyn JH; Rinzel J
    J Neurophysiol; 2016 Apr; 115(4):2033-51. PubMed ID: 26823512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.