These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20130346)

  • 1. Ignition and temperature behavior of a single-wall carbon nanotube sample.
    Volotskova O; Shashurin A; Keidar M; Raitses Y; Demidov V; Adams S
    Nanotechnology; 2010 Mar; 21(9):095705. PubMed ID: 20130346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal physics in carbon nanotube growth kinetics.
    Louchev OA; Kanda H; Rosén A; Bolton K
    J Chem Phys; 2004 Jul; 121(1):446-56. PubMed ID: 15260566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled confinement and release of gases in single-walled carbon nanotube bundles.
    Matranga C; Bockrath B
    J Phys Chem B; 2005 May; 109(19):9209-15. PubMed ID: 16852100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities.
    Feng X; Irle S; Witek H; Morokuma K; Vidic R; Borguet E
    J Am Chem Soc; 2005 Aug; 127(30):10533-8. PubMed ID: 16045340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization and evaluation of networked single-wall carbon nanotubes as a NO(2) gas sensing material.
    Sasaki I; Minami N; Karthigeyan A; Iakoubovskii K
    Analyst; 2009 Feb; 134(2):325-30. PubMed ID: 19173057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the tube diameter distribution on the high-temperature structural modification of bundled single-walled carbon nanotubes.
    Kim UJ; Gutiérrez HR; Kim JP; Eklund PC
    J Phys Chem B; 2005 Dec; 109(49):23358-65. PubMed ID: 16375307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Raman spectra of carbon nanotubes produced in different inert atmosphere and their pressures].
    He YY; Zhang HY; Wu CY; Zhu YJ; Liang YB; Chen YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Aug; 22(4):584-7. PubMed ID: 12938371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic properties of single-walled carbon nanotube networks.
    Bekyarova E; Itkis ME; Cabrera N; Zhao B; Yu A; Gao J; Haddon RC
    J Am Chem Soc; 2005 Apr; 127(16):5990-5. PubMed ID: 15839699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study on different carbon nanotube materials in terms of transparent conductive coatings.
    Li Z; Kandel HR; Dervishi E; Saini V; Xu Y; Biris AR; Lupu D; Salamo GJ; Biris AS
    Langmuir; 2008 Mar; 24(6):2655-62. PubMed ID: 18251555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions.
    Yao Y; Li Q; Zhang J; Liu R; Jiao L; Zhu YT; Liu Z
    Nat Mater; 2007 Apr; 6(4):283-6. PubMed ID: 17369833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct deposition of single-walled carbon nanotube thin films via electrostatic spray assisted chemical vapor deposition.
    Hsieh YP; Hofmann M; Son H; Jia X; Chen YF; Liang CT; Dresselhaus MS; Kong J
    Nanotechnology; 2009 Feb; 20(6):065601. PubMed ID: 19417389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes.
    Pop E
    Nanotechnology; 2008 Jul; 19(29):295202. PubMed ID: 21730598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties.
    Zhang X; Lü Z; Wen M; Liang H; Zhang J; Liu Z
    J Phys Chem B; 2005 Jan; 109(3):1101-7. PubMed ID: 16851066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption on carbon nanotubes studied using polarization-modulated infrared reflection-absorption spectroscopy.
    Bermudez VM
    J Phys Chem B; 2005 May; 109(20):9970-9. PubMed ID: 16852205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation.
    Agnihotri S; Mota JP; Rostam-Abadi M; Rood MJ
    Langmuir; 2005 Feb; 21(3):896-904. PubMed ID: 15667165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single wall carbon nanotube amplification: en route to a type-specific growth mechanism.
    Smalley RE; Li Y; Moore VC; Price BK; Colorado R; Schmidt HK; Hauge RH; Barron AR; Tour JM
    J Am Chem Soc; 2006 Dec; 128(49):15824-9. PubMed ID: 17147393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of single-walled carbon nanotubes by use of ionic liquid-aided capillary electrophoresis.
    López-Pastor M; Domínguez-Vidal A; Ayora-Cañada MJ; Simonet BM; Lendl B; Valcarcel M
    Anal Chem; 2008 Apr; 80(8):2672-9. PubMed ID: 18341301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purity assessment of single-wall carbon nanotubes, using optical absorption spectroscopy.
    Landi BJ; Ruf HJ; Evans CM; Cress CD; Raffaelle RP
    J Phys Chem B; 2005 May; 109(20):9952-65. PubMed ID: 16852203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging.
    Loos J; Alexeev A; Grossiord N; Koning CE; Regev O
    Ultramicroscopy; 2005 Sep; 104(2):160-7. PubMed ID: 15885910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.