These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20131056)

  • 41. De novo transcriptome assembly of the cubomedusa Tripedalia cystophora, including the analysis of a set of genes involved in peptidergic neurotransmission.
    Nielsen SKD; Koch TL; Hauser F; Garm A; Grimmelikhuijzen CJP
    BMC Genomics; 2019 Mar; 20(1):175. PubMed ID: 30836949
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using scotopic and photopic flicker to measure lens optical density.
    Wooten BR; Hammond BR; Renzi LM
    Ophthalmic Physiol Opt; 2007 Jul; 27(4):321-8. PubMed ID: 17584282
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gonadal cnidocytes in the cubozoan Tripedalia cystophora Conant, 1897 (Cnidaria: Cubozoa).
    Helmark S; Garm A
    J Morphol; 2019 Oct; 280(10):1530-1536. PubMed ID: 31334880
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assembly of the cnidarian camera-type eye from vertebrate-like components.
    Kozmik Z; Ruzickova J; Jonasova K; Matsumoto Y; Vopalensky P; Kozmikova I; Strnad H; Kawamura S; Piatigorsky J; Paces V; Vlcek C
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8989-93. PubMed ID: 18577593
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cubozoan crystallins: evidence for convergent evolution of pax regulatory sequences.
    Kozmik Z; Swamynathan SK; Ruzickova J; Jonasova K; Paces V; Vlcek C; Piatigorsky J
    Evol Dev; 2008; 10(1):52-61. PubMed ID: 18184357
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The cellular eye lens and crystallins of cubomedusan jellyfish.
    Piatigorsky J; Horwitz J; Kuwabara T; Cutress CE
    J Comp Physiol A; 1989 Feb; 164(5):577-87. PubMed ID: 2565398
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Quantitative evaluation of flicker ERG wave forms in low vision patients].
    Wu DZ
    Zhonghua Yan Ke Za Zhi; 1991 Jul; 27(4):207-9. PubMed ID: 1935444
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Case of lens-induced uveitis associated with supernormal flicker ERG amplitudes after cataract surgery.
    Kato K; Sugawara A; Nagashima R; Sugimoto M; Ikesugi K; Matsubara H; Takeuchi M; Kondo M
    Doc Ophthalmol; 2021 Apr; 142(2):233-238. PubMed ID: 32808145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Colored light stimuli in ERG for differential diagnosis of cone dystrophies].
    Kellner U; Foerster MH
    Klin Monbl Augenheilkd; 1992 Aug; 201(2):102-6. PubMed ID: 1434375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Is sleep's 'supreme mystery' unraveling? An evolutionary analysis of sleep encounters no mystery; nor does life's earliest sleep, recently discovered in jellyfish.
    Kavanau JL
    Med Hypotheses; 2006; 66(1):3-9. PubMed ID: 16213664
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flicker adaptation shows evidence of many visual channels selectively sensitive to temporal frequency.
    Nilsson TH; Richmond CF; Nelson TM
    Vision Res; 1975 May; 15(5):621-4. PubMed ID: 1136178
    [No Abstract]   [Full Text] [Related]  

  • 52. Temporal response properties of the primary and secondary rod-signaling pathways in normal and Gnat2 mutant mice.
    Nusinowitz S; Ridder WH; Ramirez J
    Exp Eye Res; 2007 Jun; 84(6):1104-14. PubMed ID: 17408617
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characteristics of period doubling in the rat cone flicker ERG.
    Shah MR; Alexander KR; Ripps H; Qian H
    Exp Eye Res; 2010 Feb; 90(2):196-202. PubMed ID: 19840785
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of flicker adaptation and temporal gain control on the flicker ERG.
    Wu S; Burns SA; Elsner AE
    Vision Res; 1995 Nov; 35(21):2943-53. PubMed ID: 8533333
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Frequency dependence in scotopic flicker sensitivity.
    Nygaard RW; Frumkes TE
    Vision Res; 1985; 25(1):115-27. PubMed ID: 3984209
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Features of the human rod bipolar cell ERG response during fusion of scotopic flicker.
    Cameron AM; Lam JS
    Seeing Perceiving; 2012; 25(6):545-60. PubMed ID: 23550364
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visual adaptation and the cone flicker electroretinogram.
    Peachey NS; Alexander KR; Fishman GA
    Invest Ophthalmol Vis Sci; 1991 Apr; 32(5):1517-22. PubMed ID: 2016133
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Opponent and nonopponent contributions to the zebrafish electroretinogram using heterochromatic flicker photometry.
    Patterson WF; McDowell AL; Hughes A; Bilotta J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 May; 188(4):283-93. PubMed ID: 12012099
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The contribution of human cone photoreceptors to the photopic flicker electroretinogram.
    Verma R; Pianta MJ
    J Vis; 2009 Mar; 9(3):9.1-12. PubMed ID: 19757948
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flicker electroretinograms: a systems analytic approach.
    Odom JV; Reits D; Burgers N; Riemslag FC
    Optom Vis Sci; 1992 Feb; 69(2):106-16. PubMed ID: 1584548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.