These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20131057)

  • 1. Synchronization of wing beat cycle of the desert locust, Schistocerca gregaria, by periodic light flashes.
    Schmeling F; Stange G; Homberg U
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Mar; 196(3):199-211. PubMed ID: 20131057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surgical lesion of the anterior optic tract abolishes polarotaxis in tethered flying locusts, Schistocerca gregaria.
    Mappes M; Homberg U
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jan; 193(1):43-50. PubMed ID: 16988831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of wing pronation in evasive steering of locusts.
    Ribak G; Rand D; Weihs D; Ayali A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):541-55. PubMed ID: 22547148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke?
    Walker SM; Thomas AL; Taylor GK
    J R Soc Interface; 2009 Sep; 6(38):735-47. PubMed ID: 19091683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hind wing of the desert locust (Schistocerca gregaria Forskål). I. Functional morphology and mode of operation.
    Wootton RJ; Evans KE; Herbert R; Smith CW
    J Exp Biol; 2000 Oct; 203(Pt 19):2921-31. PubMed ID: 10976029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria.
    Taylor GK; Zbikowski R
    J R Soc Interface; 2005 Jun; 2(3):197-221. PubMed ID: 16849180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gliding behaviour elicited by lateral looming stimuli in flying locusts.
    Santer RD; Simmons PJ; Rind FC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):61-73. PubMed ID: 15558287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral analysis of polarization vision in tethered flying locusts.
    Mappes M; Homberg U
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jan; 190(1):61-8. PubMed ID: 14648100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts and free-flying hoverflies.
    Walker SM; Thomas AL; Taylor GK
    J R Soc Interface; 2009 Apr; 6(33):351-66. PubMed ID: 18682361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-varying span efficiency through the wingbeat of desert locusts.
    Henningsson P; Bomphrey RJ
    J R Soc Interface; 2012 Jun; 9(71):1177-86. PubMed ID: 22112649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hind wing of the desert locust (Schistocerca gregaria Forskål). III. A finite element analysis of a deployable structure.
    Herbert RC; Young PG; Smith CW; Wootton RJ; Evans KE
    J Exp Biol; 2000 Oct; 203(Pt 19):2945-55. PubMed ID: 10976031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic flight stability in the desert locust Schistocerca gregaria.
    Taylor GK; Thomas AL
    J Exp Biol; 2003 Aug; 206(Pt 16):2803-29. PubMed ID: 12847126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry.
    Henningsson P; Michaelis D; Nakata T; Schanz D; Geisler R; Schröder A; Bomphrey RJ
    J R Soc Interface; 2015 Jul; 12(108):20150119. PubMed ID: 26040598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells.
    Arbas EA
    J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How flies are flirting on the fly.
    Eichorn C; Hrabar M; Van Ryn EC; Brodie BS; Blake AJ; Gries G
    BMC Biol; 2017 Feb; 15(1):2. PubMed ID: 28193269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active and passive antennal movements during visually guided steering in flying Drosophila.
    Mamiya A; Straw AD; Tómasson E; Dickinson MH
    J Neurosci; 2011 May; 31(18):6900-14. PubMed ID: 21543620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proprioceptive input patterns elevator activity in the locust flight system.
    Wolf H; Pearson KG
    J Neurophysiol; 1988 Jun; 59(6):1831-53. PubMed ID: 3404207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hind wing of the desert locust (Schistocerca gregaria Forskål). II. Mechanical properties and functioning of the membrane.
    Smith CW; Herbert R; Wootton RJ; Evans KE
    J Exp Biol; 2000 Oct; 203(Pt 19):2933-43. PubMed ID: 10976030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Migrating locusts can detect polarized reflections to avoid flying over the sea.
    Shashar N; Sabbah S; Aharoni N
    Biol Lett; 2005 Dec; 1(4):472-5. PubMed ID: 17148236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Close encounters among flying locusts produce wing-beat coupling.
    Kutsch W; Camhi J; Sumbre G
    J Comp Physiol A; 1994; 174(5):643-9. PubMed ID: 18186157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.