These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 20131079)
41. Heterologous expression and efficient ethanol production of a Rhizopus glucoamylase gene in Saccharomyces cerevisiae. Yang S; Jia N; Li M; Wang J Mol Biol Rep; 2011 Jan; 38(1):59-64. PubMed ID: 20238168 [TBL] [Abstract][Full Text] [Related]
42. Efficient and direct fermentation of starch to ethanol by sake yeast strains displaying fungal glucoamylases. Kotaka A; Sahara H; Hata Y; Abe Y; Kondo A; Kato-Murai M; Kuroda K; Ueda M Biosci Biotechnol Biochem; 2008 May; 72(5):1376-9. PubMed ID: 18460787 [TBL] [Abstract][Full Text] [Related]
43. The construction of a stable starch-fermenting yeast strain using genetic engineering and rare-mating. Kim TG; Kim K Appl Biochem Biotechnol; 1996 Apr; 59(1):39-51. PubMed ID: 8651681 [TBL] [Abstract][Full Text] [Related]
44. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol. Görgens JF; Bressler DC; van Rensburg E Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118 [TBL] [Abstract][Full Text] [Related]
45. High-concentration ethanol production from cooked corn starch by using medium-temperature cooking process. Chi Z; Liu J; Xu P Chin J Biotechnol; 1995; 11(3):171-6. PubMed ID: 8679933 [TBL] [Abstract][Full Text] [Related]
46. Expression of a fungal glucoamylase in transgenic rice seeds. Xu X; Huang J; Fang J; Lin C; Cheng J; Shen Z Protein Expr Purif; 2008 Oct; 61(2):113-6. PubMed ID: 18588984 [TBL] [Abstract][Full Text] [Related]
47. Modeling of recombinant yeast cells: reduction of phase space. Birol G; Birol I; Kirdar B; Onsan ZI Biomed Sci Instrum; 1997; 34():163-8. PubMed ID: 9603032 [TBL] [Abstract][Full Text] [Related]
48. Improving the performance of a continuous process for the production of ethanol from starch. Trovati J; Giordano RC; Giordano RL Appl Biochem Biotechnol; 2009 May; 156(1-3):76-90. PubMed ID: 19240991 [TBL] [Abstract][Full Text] [Related]
49. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch. Liu J; Li J; Shin HD; Du G; Chen J; Liu L J Biotechnol; 2017 Nov; 262():40-46. PubMed ID: 28965975 [TBL] [Abstract][Full Text] [Related]
50. Ethanol production from starch hydrolyzates using Zymomonas mobilis and glucoamylase entrapped in polyvinylalcohol hydrogel. Rebros M; Rosenberg M; Grosová Z; Kristofíková L; Paluch M; Sipöcz M Appl Biochem Biotechnol; 2009 Sep; 158(3):561-70. PubMed ID: 19089646 [TBL] [Abstract][Full Text] [Related]
51. Production of ethanol directly from potato starch by mixed culture of Saccharomyces cerevisiae and Aspergillus niger using electrochemical bioreactor. Jeon BY; Kim DH; Na BK; Ahn DH; Park DH J Microbiol Biotechnol; 2008 Mar; 18(3):545-51. PubMed ID: 18388475 [TBL] [Abstract][Full Text] [Related]
52. Simultaneous raw starch hydrolysis and ethanol fermentation by glucoamylase from Rhizoctonia solani and Saccharomyces cerevisiae. Singh D; Dahiya JS; Nigam P J Basic Microbiol; 1995; 35(2):117-21. PubMed ID: 7783000 [TBL] [Abstract][Full Text] [Related]
53. Expression and secretion of glucoamylase of Aspergillus niger in Saccharomyces cerevisiae. Tang G; Gong H; Zhong L; Yang K Chin J Biotechnol; 1994; 10(3):163-8. PubMed ID: 7893936 [TBL] [Abstract][Full Text] [Related]
54. Genome mining for new α-amylase and glucoamylase encoding sequences and high level expression of a glucoamylase from Talaromyces stipitatus for potential raw starch hydrolysis. Xiao Z; Wu M; Grosse S; Beauchemin M; Lévesque M; Lau PC Appl Biochem Biotechnol; 2014 Jan; 172(1):73-86. PubMed ID: 24046254 [TBL] [Abstract][Full Text] [Related]
55. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Tateno T; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2007 Dec; 77(3):533-41. PubMed ID: 17891388 [TBL] [Abstract][Full Text] [Related]
56. Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: Toward consolidated bioprocessing. Tanimura A; Kikukawa M; Yamaguchi S; Kishino S; Ogawa J; Shima J Sci Rep; 2015 Apr; 5():9593. PubMed ID: 25901788 [TBL] [Abstract][Full Text] [Related]
57. Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis alpha-amylase gene. Kang NY; Park JN; Chin JE; Lee HB; Im SY; Bai S Biotechnol Lett; 2003 Nov; 25(21):1847-51. PubMed ID: 14677710 [TBL] [Abstract][Full Text] [Related]
58. Fermentation of starch to ethanol by an amylolytic yeast Saccharomyces diastaticus SM-10. Sharma S; Pandey M; Saharan B Indian J Exp Biol; 2002 Mar; 40(3):325-8. PubMed ID: 12635704 [TBL] [Abstract][Full Text] [Related]
59. Optimization of solid-state enzymatic hydrolysis of chestnut using mixtures of alpha-amylase and glucoamylase. López C; Torrado A; Guerra NP; Pastrana L J Agric Food Chem; 2005 Feb; 53(4):989-95. PubMed ID: 15713010 [TBL] [Abstract][Full Text] [Related]
60. Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Murai T; Ueda M; Shibasaki Y; Kamasawa N; Osumi M; Imanaka T; Tanaka A Appl Microbiol Biotechnol; 1999 Jan; 51(1):65-70. PubMed ID: 10077821 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]