BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20131080)

  • 21. CipA-mediating enzyme self-assembly to enhance the biosynthesis of pyrogallol in Escherichia coli.
    Huo YX; Ren H; Yu H; Zhao L; Yu S; Yan Y; Chen Z
    Appl Microbiol Biotechnol; 2018 Dec; 102(23):10005-10015. PubMed ID: 30242435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pushing the equilibrium of regio-complementary carboxylation of phenols and hydroxystyrene derivatives.
    Wuensch C; Schmidt N; Gross J; Grischek B; Glueck SM; Faber K
    J Biotechnol; 2013 Nov; 168(3):264-70. PubMed ID: 23880442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of the pathway for the degradation of anthranilate in Aspergillus niger.
    Rao PV; Sreeleela NS; Premakumar R; Vaidyanathan CS
    J Bacteriol; 1971 Jul; 107(1):100-5. PubMed ID: 5563863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes).
    Grant DJ; Patel JC
    Antonie Van Leeuwenhoek; 1969; 35(3):325-43. PubMed ID: 5309907
    [No Abstract]   [Full Text] [Related]  

  • 25. A novel coupled enzyme assay reveals an enzyme responsible for the deamination of a chemically unstable intermediate in the metabolic pathway of 4-amino-3-hydroxybenzoic acid in Bordetella sp. strain 10d.
    Orii C; Takenaka S; Murakami S; Aoki K
    Eur J Biochem; 2004 Aug; 271(15):3248-54. PubMed ID: 15265044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of five phyllosphere bacteria isolated from Rosa rugosa leaves, and their phenotypic and metabolic properties.
    Hashidoko Y; Itoh E; Yokota K; Yoshida T; Tahara S
    Biosci Biotechnol Biochem; 2002 Nov; 66(11):2474-8. PubMed ID: 12506991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regioselective enzymatic carboxylation of phenols and hydroxystyrene derivatives.
    Wuensch C; Glueck SM; Gross J; Koszelewski D; Schober M; Faber K
    Org Lett; 2012 Apr; 14(8):1974-7. PubMed ID: 22471935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic metabolism of catechol by the denitrifying bacterium Thauera aromatica--a result of promiscuous enzymes and regulators?
    Ding B; Schmeling S; Fuchs G
    J Bacteriol; 2008 Mar; 190(5):1620-30. PubMed ID: 18156265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beta-D-galactosidase from Enterobacter cloacae: production and some physicochemical properties.
    Ghatak A; Guha AK; Ray L
    Appl Biochem Biotechnol; 2010 Nov; 162(6):1678-88. PubMed ID: 20358408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Carbon dioxide evolution by bacteria of the genus Enterobacter that utilize glucose and glycerin].
    Kazanskaia TB; Aniukhina IuG
    Mikrobiologiia; 1980; 49(2):240-3. PubMed ID: 6771497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects on cell morphology of growing Pseudomonas aeruginosa, Enterobacter cloacae and Staphylococcus aureus in subinhibitory concentrations of p-aminobenzoic acid.
    Richards RM; Xing DK; King TP
    Microbios; 1993; 73(295):105-11. PubMed ID: 8459778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structures of nonoxidative zinc-dependent 2,6-dihydroxybenzoate (gamma-resorcylate) decarboxylase from Rhizobium sp. strain MTP-10005.
    Goto M; Hayashi H; Miyahara I; Hirotsu K; Yoshida M; Oikawa T
    J Biol Chem; 2006 Nov; 281(45):34365-73. PubMed ID: 16963440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accumulation of poly[(R)-3-hydroxyalkanoates] in Enterobacter cloacae SU-1 during growth with two different carbon sources in batch culture.
    Samrot AV; Avinesh RB; Sukeetha SD; Senthilkumar P
    Appl Biochem Biotechnol; 2011 Jan; 163(1):195-203. PubMed ID: 20632129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The inducibility of Amp C enzyme of Enterobacter cloacae and its susceptibility to enzyme inhibitor].
    Zhang Y; Li J; Zhao M
    Zhonghua Yi Xue Za Zhi; 2001 Feb; 81(4):227-30. PubMed ID: 11798880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new mode of ring cleavage of 2,3-dihydroxybenzoic acid in Tecoma stans (L.). Partial purification and properties of 2,3-dihydroxybenzoate 2,3-oxygenase.
    Sharma HK; Vaidyanathan CS
    Eur J Biochem; 1975 Aug; 56(1):163-71. PubMed ID: 1175620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of serine beta-lactamases by vanadate-catechol complexes.
    Adediran SA; Pratt RF
    Biochemistry; 2008 Sep; 47(36):9467-74. PubMed ID: 18702503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Decarboxylase activity of bacteria of the genus Enterobacter depending on the growing conditions].
    Kazanskaia TB; Aniukhina IuG
    Mikrobiologiia; 1980; 49(4):521-3. PubMed ID: 6774214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Formation of gallic acid from quinic acid by Enterobacter cloacae and Pseudomonas fluorescens].
    Korth H
    Arch Mikrobiol; 1973; 89(1):67-72. PubMed ID: 4632608
    [No Abstract]   [Full Text] [Related]  

  • 39. Protocatechuate is not metabolized via catechol in Enterobacter aerogenes.
    Doten RC; Ornston LN
    J Bacteriol; 1987 Dec; 169(12):5827-30. PubMed ID: 3680179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The catalytic mechanism of direction-dependent interactions for 2,3-dihydroxybenzoate decarboxylase.
    Fan Y; Wu S; Shi J; Li X; Yang Y; Feng Y; Xue S
    Appl Microbiol Biotechnol; 2023 Dec; 107(24):7451-7462. PubMed ID: 37851105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.