These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 20131781)

  • 1. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels.
    Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B
    J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A family of low-molecular-weight hydrogelators based on L-lysine derivatives with a positively charged terminal group.
    Suzuki M; Yumoto M; Kimura M; Shirai H; Hanabusa K
    Chemistry; 2003 Jan; 9(1):348-54. PubMed ID: 12506392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly mechanism for a naphthalene-dipeptide leading to hydrogelation.
    Chen L; Morris K; Laybourn A; Elias D; Hicks MR; Rodger A; Serpell L; Adams DJ
    Langmuir; 2010 Apr; 26(7):5232-42. PubMed ID: 19921840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart hydrogels from laterally-grafted peptide assembly.
    Li W; Park IS; Kang SK; Lee M
    Chem Commun (Camb); 2012 Sep; 48(70):8796-8. PubMed ID: 22836696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helical assembly of azobenzene-conjugated carbohydrate hydrogelators with specific affinity for lectins.
    Ogawa Y; Yoshiyama C; Kitaoka T
    Langmuir; 2012 Mar; 28(9):4404-12. PubMed ID: 22339091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and properties of low molecular weight amphiphilic peptide hydrogelators.
    Mitra RN; Das D; Roy S; Das PK
    J Phys Chem B; 2007 Dec; 111(51):14107-13. PubMed ID: 18052148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the coassembly of hydrogelators and surfactants based on aromatic peptide amphiphiles.
    Fleming S; Debnath S; Frederix PW; Hunt NT; Ulijn RV
    Biomacromolecules; 2014 Apr; 15(4):1171-84. PubMed ID: 24568678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels.
    Gao Y; Yang Z; Kuang Y; Ma ML; Li J; Zhao F; Xu B
    Biopolymers; 2010; 94(1):19-31. PubMed ID: 20091873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-bonding-mediated vesicular assembly of functionalized naphthalene-diimide-based bolaamphiphile and guest-induced gelation in water.
    Molla MR; Ghosh S
    Chemistry; 2012 Aug; 18(32):9860-9. PubMed ID: 22767375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo enzymatic formation of supramolecular hydrogels based on self-assembled nanofibers of a beta-amino acid derivative.
    Yang Z; Liang G; Ma M; Gao Y; Xu B
    Small; 2007 Apr; 3(4):558-62. PubMed ID: 17323399
    [No Abstract]   [Full Text] [Related]  

  • 14. Hydrogelation through self-assembly of fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent.
    Debnath S; Shome A; Das D; Das PK
    J Phys Chem B; 2010 Apr; 114(13):4407-15. PubMed ID: 20297770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rheological and structural properties of Fmoc-peptide-based hydrogels: the effect of aromatic molecular architecture on self-assembly and physical characteristics.
    Orbach R; Mironi-Harpaz I; Adler-Abramovich L; Mossou E; Mitchell EP; Forsyth VT; Gazit E; Seliktar D
    Langmuir; 2012 Jan; 28(4):2015-22. PubMed ID: 22220968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable mechanics of peptide nanofiber gels.
    Greenfield MA; Hoffman JR; de la Cruz MO; Stupp SI
    Langmuir; 2010 Mar; 26(5):3641-7. PubMed ID: 19817454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular hydrogels respond to ligand-receptor interaction.
    Zhang Y; Gu H; Yang Z; Xu B
    J Am Chem Soc; 2003 Nov; 125(45):13680-1. PubMed ID: 14599204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and properties of cholesterol-based hydrogelators with varying hydrophilic terminals: biocompatibility and development of antibacterial soft nanocomposites.
    Dutta S; Kar T; Mandal D; Das PK
    Langmuir; 2013 Jan; 29(1):316-27. PubMed ID: 23214716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic hydrogelation of small molecules.
    Yang Z; Liang G; Xu B
    Acc Chem Res; 2008 Feb; 41(2):315-26. PubMed ID: 18205323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.