These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20131856)

  • 21. Controlled Preparation and Device Application of Sub-5 nm Graphene Nanoribbons and Graphene Nanoribbon/Carbon Nanotube Intramolecular Heterostructures.
    He Z; Wang K; Yan C; Wan L; Zhou Q; Zhang T; Ye X; Zhang Y; Shi F; Jiang S; Zhao J; Wang K; Chen C
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7148-7156. PubMed ID: 36692227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of ribbon width on electrical transport properties of graphene nanoribbons.
    Bang K; Chee SS; Kim K; Son M; Jang H; Lee BH; Baik KH; Myoung JM; Ham MH
    Nano Converg; 2018; 5(1):7. PubMed ID: 29577013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Revisiting the Mechanism of Oxidative Unzipping of Multiwall Carbon Nanotubes to Graphene Nanoribbons.
    Dimiev AM; Khannanov A; Vakhitov I; Kiiamov A; Shukhina K; Tour JM
    ACS Nano; 2018 Apr; 12(4):3985-3993. PubMed ID: 29578700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a first-principles study.
    Kan EJ; Xiang HJ; Yang J; Hou JG
    J Chem Phys; 2007 Oct; 127(16):164706. PubMed ID: 17979370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective etching of graphene edges by hydrogen plasma.
    Xie L; Jiao L; Dai H
    J Am Chem Soc; 2010 Oct; 132(42):14751-3. PubMed ID: 20923144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and optical probing of highly extended, ultrathin graphene nanoribbons in carbon nanotubes.
    Lim HE; Miyata Y; Fujihara M; Okada S; Liu Z; Arifin ; Sato K; Omachi H; Kitaura R; Irle S; Suenaga K; Shinohara H
    ACS Nano; 2015 May; 9(5):5034-40. PubMed ID: 25868574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes.
    Talyzin AV; Anoshkin IV; Krasheninnikov AV; Nieminen RM; Nasibulin AG; Jiang H; Kauppinen EI
    Nano Lett; 2011 Oct; 11(10):4352-6. PubMed ID: 21875092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene Nanoribbon/Carbon Nanotube Hybrid Hydrogel: Rheology and Membrane for Ultrafast Molecular Diafiltration.
    Kim JY; Choi Y; Choi J; Kim YJ; Kang J; Kim JP; Kim JH; Kwon O; Kim SS; Kim DW
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11779-11788. PubMed ID: 35192336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The computational design of junctions between carbon nanotubes and graphene nanoribbons.
    Li YF; Li BR; Zhang HL
    Nanotechnology; 2009 Jun; 20(22):225202. PubMed ID: 19433869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energetics and electronic structure of encapsulated graphene nanoribbons in carbon nanotube.
    Mandal B; Sarkar S; Sarkar P
    J Phys Chem A; 2013 Sep; 117(36):8568-75. PubMed ID: 23675973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects.
    Botello-Méndez AR; Cruz-Silva E; López-Urías F; Sumpter BG; Meunier V; Terrones M; Terrones H
    ACS Nano; 2009 Nov; 3(11):3606-12. PubMed ID: 19863086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal conversion of bundled carbon nanotubes into graphitic ribbons.
    Gutiérrez HR; Kim UJ; Kim JP; Eklund PC
    Nano Lett; 2005 Nov; 5(11):2195-201. PubMed ID: 16277452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermally limited current carrying ability of graphene nanoribbons.
    Liao AD; Wu JZ; Wang X; Tahy K; Jena D; Dai H; Pop E
    Phys Rev Lett; 2011 Jun; 106(25):256801. PubMed ID: 21770659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of very large values of magnetoresistance in a graphene nanoribbon device.
    Kim WY; Kim KS
    Nat Nanotechnol; 2008 Jul; 3(7):408-12. PubMed ID: 18654564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.
    Tapasztó L; Dobrik G; Lambin P; Biró LP
    Nat Nanotechnol; 2008 Jul; 3(7):397-401. PubMed ID: 18654562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges.
    Morelos-Gómez A; Vega-Díaz SM; González VJ; Tristán-López F; Cruz-Silva R; Fujisawa K; Muramatsu H; Hayashi T; Mi X; Shi Y; Sakamoto H; Khoerunnisa F; Kaneko K; Sumpter BG; Kim YA; Meunier V; Endo M; Muñoz-Sandoval E; Terrones M
    ACS Nano; 2012 Mar; 6(3):2261-72. PubMed ID: 22360783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A gate-induced switch in zigzag graphene nanoribbons and charging effects.
    Cheraghchi H; Esmailzade H
    Nanotechnology; 2010 May; 21(20):205306. PubMed ID: 20418607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene nanoribbons exfoliated from graphite surface dislocation bands by electrostatic force.
    Sidorov AN; Bansal T; Ouseph PJ; Sumanasekera G
    Nanotechnology; 2010 May; 21(19):195704. PubMed ID: 20407144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spin-transport selectivity upon Co adsorption on antiferromagnetic graphene nanoribbons.
    Cocchi C; Prezzi D; Calzolari A; Molinari E
    J Chem Phys; 2010 Sep; 133(12):124703. PubMed ID: 20886961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes.
    Higginbotham AL; Kosynkin DV; Sinitskii A; Sun Z; Tour JM
    ACS Nano; 2010 Apr; 4(4):2059-69. PubMed ID: 20201538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.