BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 20131956)

  • 1. Modulating endochondral ossification of multipotent stromal cells for bone regeneration.
    Gawlitta D; Farrell E; Malda J; Creemers LB; Alblas J; Dhert WJ
    Tissue Eng Part B Rev; 2010 Aug; 16(4):385-95. PubMed ID: 20131956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ectopic osteogenesis and chondrogenesis of bone marrow stromal stem cells in alginate system.
    Cai X; Lin Y; Ou G; Luo E; Man Y; Yuan Q; Gong P
    Cell Biol Int; 2007 Aug; 31(8):776-83. PubMed ID: 17324591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recapitulating endochondral ossification: a promising route to in vivo bone regeneration.
    Thompson EM; Matsiko A; Farrell E; Kelly DJ; O'Brien FJ
    J Tissue Eng Regen Med; 2015 Aug; 9(8):889-902. PubMed ID: 24916192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luciferase labeling for multipotent stromal cell tracking in spinal fusion versus ectopic bone tissue engineering in mice and rats.
    Geuze RE; Prins HJ; Öner FC; van der Helm YJ; Schuijff LS; Martens AC; Kruyt MC; Alblas J; Dhert WJ
    Tissue Eng Part A; 2010 Nov; 16(11):3343-51. PubMed ID: 20575656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation.
    Kagami H; Agata H; Tojo A
    Int J Biochem Cell Biol; 2011 Mar; 43(3):286-9. PubMed ID: 21147252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels.
    Sheehy EJ; Mesallati T; Vinardell T; Kelly DJ
    Acta Biomater; 2015 Feb; 13():245-53. PubMed ID: 25463500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Merging the old skeletal biology with the new. I. Intramembranous ossification, endochondral ossification, ectopic bone, secondary cartilage, and pathologic considerations.
    Cohen MM
    J Craniofac Genet Dev Biol; 2000; 20(2):84-93. PubMed ID: 11100738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effect of BMP4 on NIH/3T3 and C2C12 cells: implications for endochondral bone formation.
    Li G; Peng H; Corsi K; Usas A; Olshanski A; Huard J
    J Bone Miner Res; 2005 Sep; 20(9):1611-23. PubMed ID: 16059633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffold-based bone engineering by using genetically modified cells.
    Hutmacher DW; Garcia AJ
    Gene; 2005 Feb; 347(1):1-10. PubMed ID: 15777645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering osteochondral constructs through spatial regulation of endochondral ossification.
    Sheehy EJ; Vinardell T; Buckley CT; Kelly DJ
    Acta Biomater; 2013 Mar; 9(3):5484-92. PubMed ID: 23159563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model.
    Tortelli F; Tasso R; Loiacono F; Cancedda R
    Biomaterials; 2010 Jan; 31(2):242-9. PubMed ID: 19796807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of marrow stromal cells derived chondrocytes on repair of full-thickness defects of rabbit articular cartilage].
    Wang WM; Hu YY
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Jan; 18(1):58-62. PubMed ID: 14768092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regeneration and fracture healing. Experience with distraction osteogenesis model.
    Richards M; Goulet JA; Weiss JA; Waanders NA; Schaffler MB; Goldstein SA
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S191-204. PubMed ID: 9917639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration.
    Freeman FE; McNamara LM
    Tissue Eng Part B Rev; 2017 Apr; 23(2):128-141. PubMed ID: 27758156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair.
    Bernhard J; Ferguson J; Rieder B; Heimel P; Nau T; Tangl S; Redl H; Vunjak-Novakovic G
    Biomaterials; 2017 Sep; 139():202-212. PubMed ID: 28622604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo bone formation by human marrow stromal cells in biodegradable scaffolds that release dexamethasone and ascorbate-2-phosphate.
    Kim H; Suh H; Jo SA; Kim HW; Lee JM; Kim EH; Reinwald Y; Park SH; Min BH; Jo I
    Biochem Biophys Res Commun; 2005 Jul; 332(4):1053-60. PubMed ID: 15922303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis.
    Li M; Amizuka N; Oda K; Tokunaga K; Ito T; Takeuchi K; Takagi R; Maeda T
    Microsc Res Tech; 2004 Jul; 64(4):330-42. PubMed ID: 15481050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ex vivo model for chondrogenesis and osteogenesis.
    Pound JC; Green DW; Roach HI; Mann S; Oreffo RO
    Biomaterials; 2007 Jun; 28(18):2839-49. PubMed ID: 17363052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taking the endochondral route to craniomaxillofacial bone regeneration: A logical approach?
    Kruijt Spanjer EC; Bittermann GKP; van Hooijdonk IEM; Rosenberg AJWP; Gawlitta D
    J Craniomaxillofac Surg; 2017 Jul; 45(7):1099-1106. PubMed ID: 28479032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.