BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 20132410)

  • 1. Involvement of β-adrenergic receptor in synaptic vesicle swelling and implication in neurotransmitter release.
    Chen ZH; Lee JS; Shin L; Cho WJ; Jena BP
    J Cell Mol Med; 2011 Mar; 15(3):572-6. PubMed ID: 20132410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of cholesterol in synaptic vesicle swelling.
    Lee JS; Cho WJ; Shin L; Jena BP
    Exp Biol Med (Maywood); 2010 Apr; 235(4):470-7. PubMed ID: 20407079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of vH(+)-ATPase in synaptic vesicle swelling.
    Shin L; Basi N; Jeremic A; Lee JS; Cho WJ; Chen Z; Abu-Hamdah R; Oupicky D; Jena BP
    J Neurosci Res; 2010 Jan; 88(1):95-101. PubMed ID: 19610106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of water channels in synaptic vesicle swelling.
    Jeremic A; Cho WJ; Jena BP
    Exp Biol Med (Maywood); 2005 Oct; 230(9):674-80. PubMed ID: 16179736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo stimulation of the beta(2)-adrenergic pathway increases expression of the Gi proteins and the alpha(2)A-adrenergic receptor genes in the pregnant rat myometrium.
    Lécrivain JL; Mhaouty-Kodja S; Cohen-Tannoudji J; Maltier JP; Legrand C
    J Endocrinol; 1998 Feb; 156(2):379-87. PubMed ID: 9518886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Gi proteins in reduced vasorelaxation response to beta-adrenoceptor agonists in rat aorta during maturation.
    Baloğlu E; Kiziltepe O; Gürdal H
    Eur J Pharmacol; 2007 Jun; 564(1-3):167-73. PubMed ID: 17395174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secretory vesicle swelling by atomic force microscopy.
    Cho SJ; Jena BP
    Methods Mol Biol; 2006; 319():317-30. PubMed ID: 16719363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of beta-adrenoceptors responsible for venom production in the venom gland of the snake Bothrops jararaca.
    Yamanouye N; Carneiro SM; Scrivano CN; Markus RP
    Life Sci; 2000 Jun; 67(3):217-26. PubMed ID: 10983865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit.
    Zeiders JL; Seidler FJ; Slotkin TA
    J Mol Cell Cardiol; 1997 Feb; 29(2):603-15. PubMed ID: 9140819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity.
    Higashijima T; Burnier J; Ross EM
    J Biol Chem; 1990 Aug; 265(24):14176-86. PubMed ID: 2117607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the water channel aquaporin-1: isolation and reconstitution of the regulatory complex.
    Abu-Hamdah R; Cho WJ; Cho SJ; Jeremic A; Kelly M; Ilie AE; Jena BP
    Cell Biol Int; 2004; 28(1):7-17. PubMed ID: 14759764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of guanine, inosine, and xanthine nucleotides on beta(2)-adrenergic receptor/G(s) interactions: evidence for multiple receptor conformations.
    Seifert R; Gether U; Wenzel-Seifert K; Kobilka BK
    Mol Pharmacol; 1999 Aug; 56(2):348-58. PubMed ID: 10419554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable association of G proteins with beta 2AR is independent of the state of receptor activation.
    Lachance M; Ethier N; Wolbring G; Schnetkamp PP; Hébert TE
    Cell Signal; 1999 Jul; 11(7):523-33. PubMed ID: 10405763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agonist regulation of beta-adrenergic receptors: immunoblotting and indirect immunofluorescence reveal agonist-induced lateral sequestration and loss of binding.
    Wang HY; Liao JF; Malbon CC
    Chin J Physiol; 1996; 39(2):83-93. PubMed ID: 8902307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K+ secretion in strial marginal cells is stimulated via beta 1-adrenergic receptors but not via beta 2-adrenergic or vasopressin receptors.
    Wangemann P; Liu J; Shimozono M; Schimanski S; Scofield MA
    J Membr Biol; 2000 Jun; 175(3):191-202. PubMed ID: 10833529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Murine ventricular L-type Ca(2+) current is enhanced by zinterol via beta(1)-adrenoceptors, and is reduced in TG4 mice overexpressing the human beta(2)-adrenoceptor.
    Heubach JF; Graf EM; Molenaar P; Jäger A; Schröder F; Herzig S; Harding SE; Ravens U
    Br J Pharmacol; 2001 May; 133(1):73-82. PubMed ID: 11325796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations.
    Seifert R; Wenzel-Seifert K; Gether U; Kobilka BK
    J Pharmacol Exp Ther; 2001 Jun; 297(3):1218-26. PubMed ID: 11356949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-Adrenergic Receptors/Epac Signaling Increases the Size of the Readily Releasable Pool of Synaptic Vesicles Required for Parallel Fiber LTP.
    Martín R; García-Font N; Suárez-Pinilla AS; Bartolomé-Martín D; Ferrero JJ; Luján R; Torres M; Sánchez-Prieto J
    J Neurosci; 2020 Nov; 40(45):8604-8617. PubMed ID: 33046543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The beta2-adrenergic receptor specifically sequesters Gs but signals through both Gs and Gi/o in rat sympathetic neurons.
    Vásquez C; Lewis DL
    Neuroscience; 2003; 118(3):603-10. PubMed ID: 12710970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta(2)-adrenergic and several other G protein-coupled receptors in human atrial membranes activate both G(s) and G(i).
    Kilts JD; Gerhardt MA; Richardson MD; Sreeram G; Mackensen GB; Grocott HP; White WD; Davis RD; Newman MF; Reves JG; Schwinn DA; Kwatra MM
    Circ Res; 2000 Oct; 87(8):705-9. PubMed ID: 11029407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.