BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20132510)

  • 21. Relationship between xanthophyll cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress.
    Vaz J; Sharma PK
    Indian J Exp Biol; 2011 Jan; 49(1):60-7. PubMed ID: 21365998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation.
    Kotabová E; Kaňa R; Jarešová J; Prášil O
    FEBS Lett; 2011 Jun; 585(12):1941-5. PubMed ID: 21570974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids.
    Jahns P; Latowski D; Strzalka K
    Biochim Biophys Acta; 2009 Jan; 1787(1):3-14. PubMed ID: 18976630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-harvesting complex II pigments and proteins in association with Cbr, a homolog of higher-plant early light-inducible proteins in the unicellular green alga Dunaliella.
    Banet G; Pick U; Zamir A
    Planta; 2000 May; 210(6):947-55. PubMed ID: 10872227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The photoprotective mechanisms in Secale cereale leaves under Cu and high light stress condition.
    Janik E; Maksymiec W; Gruszecki WI
    J Photochem Photobiol B; 2010 Oct; 101(1):47-52. PubMed ID: 20655756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis.
    Goral TK; Johnson MP; Duffy CD; Brain AP; Ruban AV; Mullineaux CW
    Plant J; 2012 Jan; 69(2):289-301. PubMed ID: 21919982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light energy management in micropropagated plants of Castanea sativa, effects of photoinhibition.
    Sáez PL; Bravo LA; Latsague MI; Toneatti MJ; Sánchez-Olate M; Ríos DG
    Plant Sci; 2013 Mar; 201-202():12-24. PubMed ID: 23352399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in the energy transfer pathways within photosystem II antenna induced by xanthophyll cycle activity.
    Ilioaia C; Duffy CD; Johnson MP; Ruban AV
    J Phys Chem B; 2013 May; 117(19):5841-7. PubMed ID: 23597158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L.
    Bilger W; Björkman O
    Planta; 1991 May; 184(2):226-34. PubMed ID: 24194074
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three pools of zeaxanthin in Quercus coccifera leaves during light transitions with different roles in rapidly reversible photoprotective energy dissipation and photoprotection.
    Peguero-Pina JJ; Gil-Pelegrín E; Morales F
    J Exp Bot; 2013 Apr; 64(6):1649-61. PubMed ID: 23390289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct isolation of a functional violaxanthin cycle domain from thylakoid membranes of higher plants.
    Goss R; Greifenhagen A; Bergner J; Volke D; Hoffmann R; Wilhelm C; Schaller-Laudel S
    Planta; 2017 Apr; 245(4):793-806. PubMed ID: 28025675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH.
    Bruce D; Samson G; Carpenter C
    Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing leaf photoprotective mechanisms using terrestrial LiDAR: towards mapping canopy photosynthetic performance in three dimensions.
    Magney TS; Eusden SA; Eitel JUH; Logan BA; Jiang J; Vierling LA
    New Phytol; 2014 Jan; 201(1):344-356. PubMed ID: 24032717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Is PsbS the site of non-photochemical quenching in photosynthesis?
    Niyogi KK; Li XP; Rosenberg V; Jung HS
    J Exp Bot; 2005 Jan; 56(411):375-82. PubMed ID: 15611143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antagonist effect between violaxanthin and de-epoxidated pigments in nonphotochemical quenching induction in the qE deficient brown alga Macrocystis pyrifera.
    Ocampo-Alvarez H; García-Mendoza E; Govindjee
    Biochim Biophys Acta; 2013 Mar; 1827(3):427-37. PubMed ID: 23287384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomics, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves.
    Timperio AM; D'Amici GM; Barta C; Loreto F; Zolla L
    J Exp Bot; 2007; 58(13):3695-710. PubMed ID: 17928371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of ascorbate and the Mehler peroxidase reaction on non-photochemical quenching of chlorophyll fluorescence in maize mesophyll chloroplasts.
    Ivanov B; Edwards G
    Planta; 2000 Apr; 210(5):765-74. PubMed ID: 10805448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity.
    Peterson RB; Havir EA
    Planta; 2000 Jan; 210(2):205-14. PubMed ID: 10664126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A theoretical investigation of xanthophyll-protein hydrogen bonding in the photosystem II antenna.
    Duffy CD; Ruban AV
    J Phys Chem B; 2012 Apr; 116(14):4310-8. PubMed ID: 22439795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The xanthophyll cycle pigments, violaxanthin and zeaxanthin, modulate molecular organization of the photosynthetic antenna complex LHCII.
    Janik E; Bednarska J; Zubik M; Sowinski K; Luchowski R; Grudzinski W; Matosiuk D; Gruszecki WI
    Arch Biochem Biophys; 2016 Feb; 592():1-9. PubMed ID: 26773208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.