BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3417 related articles for article (PubMed ID: 20132535)

  • 1. Gene ontology analysis for RNA-seq: accounting for selection bias.
    Young MD; Wakefield MJ; Smyth GK; Oshlack A
    Genome Biol; 2010; 11(2):R14. PubMed ID: 20132535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GSEPD: a Bioconductor package for RNA-seq gene set enrichment and projection display.
    Stamm K; Tomita-Mitchell A; Bozdag S
    BMC Bioinformatics; 2019 Mar; 20(1):115. PubMed ID: 30841846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Workflow Guide to RNA-seq Analysis of Chaperone Function and Beyond.
    Lang BJ; Holton KM; Gong J; Calderwood SK
    Methods Mol Biol; 2018; 1709():233-252. PubMed ID: 29177664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of androgen and anti-androgen regulation of KLK-related peptidase 2, 3, and 4 alternative transcripts in prostate cancer.
    Lai J; An J; Nelson CC; Lehman ML; Batra J; Clements JA
    Biol Chem; 2014 Sep; 395(9):1127-32. PubMed ID: 25153393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data.
    Yoon S; Nam D
    BMC Genomics; 2017 May; 18(1):408. PubMed ID: 28545404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of key genes associated with prostate cancer using RNA-seq data.
    Wu J; Feng F; Yang D; Yu S; Liu J; Gao Z
    Int J Biol Markers; 2014 Mar; 29(1):e86-92. PubMed ID: 24366848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Androgen-dependent alternative mRNA isoform expression in prostate cancer cells.
    Munkley J; Maia TM; Ibarluzea N; Livermore KE; Vodak D; Ehrmann I; James K; Rajan P; Barbosa-Morais NL; Elliott DJ
    F1000Res; 2018; 7():1189. PubMed ID: 30271587
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of kinase gene expression and splicing profile in prostate cancer with RNA-Seq data.
    Feng H; Li T; Zhang X
    BMC Genomics; 2018 Aug; 19(Suppl 6):564. PubMed ID: 30367578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new RNA-seq method to detect the transcription and non-coding RNA in prostate cancer.
    Zhang XM; Ma ZW; Wang Q; Wang JN; Yang JW; Li XD; Li H; Men TY
    Pathol Oncol Res; 2014 Jan; 20(1):43-50. PubMed ID: 24043589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel model used to detect differential splice junctions as biomarkers in prostate cancer from RNA-Seq data.
    Rezaeian I; Tavakoli A; Cavallo-Medved D; Porter LA; Rueda L
    J Biomed Inform; 2016 Apr; 60():422-30. PubMed ID: 26992567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentially expressed genes in the prostate cancer cell line LNCaP after exposure to androgen and anti-androgen.
    Coutinho-Camillo CM; Salaorni S; Sarkis AS; Nagai MA
    Cancer Genet Cytogenet; 2006 Apr; 166(2):130-8. PubMed ID: 16631469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel RNA biomarkers of prostate cancer revealed by RNA-seq analysis of formalin-fixed samples obtained from Russian patients.
    Nikitina AS; Sharova EI; Danilenko SA; Butusova TB; Vasiliev AO; Govorov AV; Prilepskaya EA; Pushkar DY; Kostryukova ES
    Oncotarget; 2017 May; 8(20):32990-33001. PubMed ID: 28380430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel androgen-regulated pathways and mRNA isoforms through genome-wide exon-specific profiling of the LNCaP transcriptome.
    Rajan P; Dalgliesh C; Carling PJ; Buist T; Zhang C; Grellscheid SN; Armstrong K; Stockley J; Simillion C; Gaughan L; Kalna G; Zhang MQ; Robson CN; Leung HY; Elliott DJ
    PLoS One; 2011; 6(12):e29088. PubMed ID: 22194994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome profiling of the cancer and normal tissues from gastric cancer patients by deep sequencing.
    Zhang FG; He ZY; Wang Q
    Tumour Biol; 2014 Aug; 35(8):7423-7. PubMed ID: 24777338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Androgens down-regulate myosin light chain kinase in human prostate cancer cells.
    Léveillé N; Fournier A; Labrie C
    J Steroid Biochem Mol Biol; 2009 Apr; 114(3-5):174-9. PubMed ID: 19429448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene set enrichment analysis of RNA-Seq data: integrating differential expression and splicing.
    Wang X; Cairns MJ
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S16. PubMed ID: 23734663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribonucleotide reductase small subunit M2 is a master driver of aggressive prostate cancer.
    Mazzu YZ; Armenia J; Nandakumar S; Chakraborty G; Yoshikawa Y; Jehane LE; Lee GM; Atiq M; Khan N; Schultz N; Kantoff PW
    Mol Oncol; 2020 Aug; 14(8):1881-1897. PubMed ID: 32385899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reference-free transcriptome exploration reveals novel RNAs for prostate cancer diagnosis.
    Pinskaya M; Saci Z; Gallopin M; Gabriel M; Nguyen HT; Firlej V; Descrimes M; Rapinat A; Gentien D; Taille A; Londoño-Vallejo A; Allory Y; Gautheret D; Morillon A
    Life Sci Alliance; 2019 Dec; 2(6):. PubMed ID: 31732695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Androgen regulated genes in human prostate xenografts in mice: relation to BPH and prostate cancer.
    Love HD; Booton SE; Boone BE; Breyer JP; Koyama T; Revelo MP; Shappell SB; Smith JR; Hayward SW
    PLoS One; 2009 Dec; 4(12):e8384. PubMed ID: 20027305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative effects of DHEA and DHT on gene expression in human LNCaP prostate cancer cells.
    Steele VE; Arnold JT; Lei H; Izmirlian G; Blackman MR
    Anticancer Res; 2006; 26(5A):3205-15. PubMed ID: 17094431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 171.