These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 20132608)
21. Studies on flow properties of powders. IV. Flow properties of tablet granulations and the uniformity of tablet content. Kristensen HG Dan Tidsskr Farm; 1969; 43(9):213-9. PubMed ID: 5371697 [No Abstract] [Full Text] [Related]
22. Prediction of tablet hardness based on near infrared spectra of raw mixed powders by chemometrics. Otsuka M; Yamane I J Pharm Sci; 2006 Jul; 95(7):1425-33. PubMed ID: 16721793 [TBL] [Abstract][Full Text] [Related]
23. Characterization of the Pore Structure of Functionalized Calcium Carbonate Tablets by Terahertz Time-Domain Spectroscopy and X-Ray Computed Microtomography. Markl D; Wang P; Ridgway C; Karttunen AP; Chakraborty M; Bawuah P; Pääkkönen P; Gane P; Ketolainen J; Peiponen KE; Zeitler JA J Pharm Sci; 2017 Jun; 106(6):1586-1595. PubMed ID: 28267446 [TBL] [Abstract][Full Text] [Related]
24. Measuring the distribution of density and tabletting force in pharmaceutical tablets by chemical imaging. Ellison CD; Ennis BJ; Hamad ML; Lyon RC J Pharm Biomed Anal; 2008 Sep; 48(1):1-7. PubMed ID: 18539424 [TBL] [Abstract][Full Text] [Related]
25. Measurement of surface color as an expedient QC method for the detection of deviations in tablet hardness. Siddiqui A; Nazzal S Int J Pharm; 2007 Aug; 341(1-2):173-80. PubMed ID: 17499947 [TBL] [Abstract][Full Text] [Related]
26. Application of face centred central composite design to optimise compression force and tablet diameter for the formulation of mechanically strong and fast disintegrating orodispersible tablets. Pabari RM; Ramtoola Z Int J Pharm; 2012 Jul; 430(1-2):18-25. PubMed ID: 22465631 [TBL] [Abstract][Full Text] [Related]
27. Modifying drug release and tablet properties of starch acetate tablets by dry powder agglomeration. Mäki R; Suihko E; Rost S; Heiskanen M; Murtomaa M; Lehto VP; Ketolainen J J Pharm Sci; 2007 Feb; 96(2):438-47. PubMed ID: 17075868 [TBL] [Abstract][Full Text] [Related]
28. Studies on flow properties of powders. 3. The influence of glidants on the technical properties of tablet granulations. Kristensen HG; Jensen VG Dan Tidsskr Farm; 1969; 43(9):205-12. PubMed ID: 5371696 [No Abstract] [Full Text] [Related]
29. A material-sparing method for simultaneous determination of true density and powder compaction properties--aspartame as an example. Sun CC Int J Pharm; 2006 Dec; 326(1-2):94-9. PubMed ID: 16926076 [TBL] [Abstract][Full Text] [Related]
30. Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging. Haaser M; Naelapää K; Gordon KC; Pepper M; Rantanen J; Strachan CJ; Taday PF; Zeitler JA; Rades T Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1095-102. PubMed ID: 23563103 [TBL] [Abstract][Full Text] [Related]
31. Application of multivariate methods to compression behavior evaluation of directly compressible materials. Haware RV; Tho I; Bauer-Brandl A Eur J Pharm Biopharm; 2009 May; 72(1):148-55. PubMed ID: 19084596 [TBL] [Abstract][Full Text] [Related]
32. Using terahertz reflectance spectroscopy to quantify drug substance in tablets. Hisazumi J; Watanabe T; Suzuki T; Wakiyama N; Terada K Chem Pharm Bull (Tokyo); 2012; 60(12):1487-93. PubMed ID: 23207630 [TBL] [Abstract][Full Text] [Related]
33. Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting. Khorasani M; Amigo JM; Sun CC; Bertelsen P; Rantanen J Eur J Pharm Biopharm; 2015 Jun; 93():293-302. PubMed ID: 25917640 [TBL] [Abstract][Full Text] [Related]
34. Nondestructive analysis of structure and components of tablet coated with film by the usage of terahertz time-domain reflection spectroscopy. Takeuchi I; Shimakura K; Ohtake H; Takayanagi J; Tomoda K; Nakajima T; Terada H; Makino K J Pharm Sci; 2014 Jan; 103(1):256-61. PubMed ID: 24282048 [TBL] [Abstract][Full Text] [Related]
35. The effect of powder blend and tablet structure on drug release mechanisms of hydrophobic starch acetate matrix tablets. van Veen B; Pajander J; Zuurman K; Lappalainen R; Poso A; Frijlink HW; Ketolainen J Eur J Pharm Biopharm; 2005 Oct; 61(3):149-57. PubMed ID: 16005196 [TBL] [Abstract][Full Text] [Related]
36. A study of the compaction process and the properties of tablets made of a new co-processed starch excipient. Mužíková J; Eimerová I Drug Dev Ind Pharm; 2011 May; 37(5):576-82. PubMed ID: 21469946 [TBL] [Abstract][Full Text] [Related]
37. Chemometric evaluation of pharmaceutical properties of antipyrine granules by near-infrared spectroscopy. Otsuka M; Mouri Y; Matsuda Y AAPS PharmSciTech; 2003; 4(3):E47. PubMed ID: 14621979 [TBL] [Abstract][Full Text] [Related]
38. A new formulation for orally disintegrating tablets using a suspension spray-coating method. Okuda Y; Irisawa Y; Okimoto K; Osawa T; Yamashita S Int J Pharm; 2009 Dec; 382(1-2):80-7. PubMed ID: 19686825 [TBL] [Abstract][Full Text] [Related]
39. Liquid boundary movements in cylindrical and convex hydrophobic matrix tablets: Effects on tablet cracking and drug release. Pajander J; van Veen B; Korhonen O; Lappalainen R; Ketolainen J Eur J Pharm Biopharm; 2006 Oct; 64(2):167-72. PubMed ID: 16846722 [TBL] [Abstract][Full Text] [Related]
40. Hydroxypropylated starches of varying amylose contents as sustained release matrices in tablets. Onofre FO; Wang YJ Int J Pharm; 2010 Jan; 385(1-2):104-12. PubMed ID: 19879935 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]