These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 2013283)
1. Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study. Lakey JH; Massotte D; Heitz F; Dasseux JL; Faucon JF; Parker MW; Pattus F Eur J Biochem; 1991 Mar; 196(3):599-607. PubMed ID: 2013283 [TBL] [Abstract][Full Text] [Related]
2. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Elkins P; Bunker A; Cramer WA; Stauffacher CV Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence energy transfer distance measurements. The hydrophobic helical hairpin of colicin A in the membrane bound state. Lakey JH; Duché D; González-Mañas JM; Baty D; Pattus F J Mol Biol; 1993 Apr; 230(3):1055-67. PubMed ID: 7683055 [TBL] [Abstract][Full Text] [Related]
4. Unfolding pathway of the colicin E1 channel protein on a membrane surface. Lindeberg M; Zakharov SD; Cramer WA J Mol Biol; 2000 Jan; 295(3):679-92. PubMed ID: 10623556 [TBL] [Abstract][Full Text] [Related]
5. A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A. van der Goot FG; González-Mañas JM; Lakey JH; Pattus F Nature; 1991 Dec; 354(6352):408-10. PubMed ID: 1956406 [TBL] [Abstract][Full Text] [Related]
6. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
7. Different sensitivities to acid denaturation within a family of proteins: implications for acid unfolding and membrane translocation. Evans LJ; Goble ML; Hales KA; Lakey JH Biochemistry; 1996 Oct; 35(40):13180-5. PubMed ID: 8855956 [TBL] [Abstract][Full Text] [Related]
8. Structure of the membrane-bound form of the pore-forming domain of colicin A: a partial proteolysis and mass spectrometry study. Massotte D; Yamamoto M; Scianimanico S; Sorokine O; van Dorsselaer A; Nakatani Y; Ourisson G; Pattus F Biochemistry; 1993 Dec; 32(50):13787-94. PubMed ID: 8268153 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence energy transfer distance measurements using site-directed single cysteine mutants. The membrane insertion of colicin A. Lakey JH; Baty D; Pattus F J Mol Biol; 1991 Apr; 218(3):639-53. PubMed ID: 2016750 [TBL] [Abstract][Full Text] [Related]
10. Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Zakharov SD; Cramer WA Biochim Biophys Acta; 2002 Oct; 1565(2):333-46. PubMed ID: 12409205 [TBL] [Abstract][Full Text] [Related]
11. Structural analyses of a channel-forming fragment of colicin E1 incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies. Suga H; Shirabe K; Yamamoto T; Tasumi M; Umeda M; Nishimura C; Nakazawa A; Nakanishi M; Arata Y J Biol Chem; 1991 Jul; 266(21):13537-43. PubMed ID: 1713207 [TBL] [Abstract][Full Text] [Related]
12. Computational studies of colicin insertion into membranes: the closed state. Prieto L; Lazaridis T Proteins; 2011 Jan; 79(1):126-41. PubMed ID: 20941706 [TBL] [Abstract][Full Text] [Related]
13. Structure in the channel forming domain of colicin E1 bound to membranes: the 402-424 sequence. Salwiński L; Hubbell WL Protein Sci; 1999 Mar; 8(3):562-72. PubMed ID: 10091659 [TBL] [Abstract][Full Text] [Related]
14. Membrane-bound form of the pore-forming domain of colicin A. A neutron scattering study. Jeanteur D; Pattus F; Timmins PA J Mol Biol; 1994 Jan; 235(3):898-907. PubMed ID: 7507175 [TBL] [Abstract][Full Text] [Related]
15. pH-dependent stability and membrane interaction of the pore-forming domain of colicin A. Muga A; Gonzalez-Manas JM; Lakey JH; Pattus F; Surewicz WK J Biol Chem; 1993 Jan; 268(3):1553-7. PubMed ID: 7678407 [TBL] [Abstract][Full Text] [Related]
16. On the nature of the unfolded intermediate in the in vitro transition of the colicin E1 channel domain from the aqueous to the membrane phase. Schendel SL; Cramer WA Protein Sci; 1994 Dec; 3(12):2272-9. PubMed ID: 7756984 [TBL] [Abstract][Full Text] [Related]
17. Colicin Ia inserts into negatively charged membranes at low pH with a tertiary but little secondary structural change. Mel SF; Stroud RM Biochemistry; 1993 Mar; 32(8):2082-9. PubMed ID: 8448167 [TBL] [Abstract][Full Text] [Related]
18. On the role of lipid in colicin pore formation. Zakharov SD; Kotova EA; Antonenko YN; Cramer WA Biochim Biophys Acta; 2004 Nov; 1666(1-2):239-49. PubMed ID: 15519318 [TBL] [Abstract][Full Text] [Related]
19. Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering. Duché D; Parker MW; González-Mañas JM; Pattus F; Baty D J Biol Chem; 1994 Mar; 269(9):6332-9. PubMed ID: 8119982 [TBL] [Abstract][Full Text] [Related]
20. Structure of the membrane-pore-forming fragment of colicin A. Parker MW; Pattus F; Tucker AD; Tsernoglou D Nature; 1989 Jan; 337(6202):93-6. PubMed ID: 2909895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]