BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 20132912)

  • 1. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties.
    Balla VK; Bodhak S; Bose S; Bandyopadhyay A
    Acta Biomater; 2010 Aug; 6(8):3349-59. PubMed ID: 20132912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct laser processing of a tantalum coating on titanium for bone replacement structures.
    Balla VK; Banerjee S; Bose S; Bandyopadhyay A
    Acta Biomater; 2010 Jun; 6(6):2329-34. PubMed ID: 19931654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis.
    Wang H; Su K; Su L; Liang P; Ji P; Wang C
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109908. PubMed ID: 31499974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing and biocompatibility evaluation of laser processed porous titanium.
    Xue W; Krishna BV; Bandyopadhyay A; Bose S
    Acta Biomater; 2007 Nov; 3(6):1007-18. PubMed ID: 17627910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of autophagy in tantalum nanoparticle-induced osteoblast proliferation.
    Kang C; Wei L; Song B; Chen L; Liu J; Deng B; Pan X; Shao L
    Int J Nanomedicine; 2017; 12():4323-4333. PubMed ID: 28652735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering.
    Wang H; Li J; Yang H; Liu C; Ruan J
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():71-5. PubMed ID: 24857467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering.
    Warnke PH; Douglas T; Wollny P; Sherry E; Steiner M; Galonska S; Becker ST; Springer IN; Wiltfang J; Sivananthan S
    Tissue Eng Part C Methods; 2009 Jun; 15(2):115-24. PubMed ID: 19072196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo.
    Tang Z; Xie Y; Yang F; Huang Y; Wang C; Dai K; Zheng X; Zhang X
    PLoS One; 2013; 8(6):e66263. PubMed ID: 23776648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Porous Tantalum with Low Elastic Modulus and Tunable Pore Size for Bone Repair.
    Liang D; Zhong C; Jiang F; Liao J; Ye H; Ren F
    ACS Biomater Sci Eng; 2023 Mar; 9(3):1720-1728. PubMed ID: 36780252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additively manufactured porous tantalum implants.
    Wauthle R; van der Stok J; Amin Yavari S; Van Humbeeck J; Kruth JP; Zadpoor AA; Weinans H; Mulier M; Schrooten J
    Acta Biomater; 2015 Mar; 14():217-25. PubMed ID: 25500631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytocompatibility, stability and osteogenic activity of powder metallurgy Ta-xZr alloys as dental implant materials.
    Ou P; Liu J; Hao C; He R; Chang L; Ruan J
    J Biomater Appl; 2021 Feb; 35(7):790-798. PubMed ID: 32854569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct comparison of additively manufactured porous titanium and tantalum implants towards
    Bandyopadhyay A; Mitra I; Shivaram A; Dasgupta N; Bose S
    Addit Manuf; 2019 Aug; 28():259-266. PubMed ID: 31406683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting.
    Hrabe NW; Heinl P; Bordia RK; Körner C; Fernandes RJ
    Connect Tissue Res; 2013; 54(6):351-60. PubMed ID: 23869614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the mechanical compatibility of additively manufactured porous Ti-25Ta alloy for load-bearing implant applications.
    Soro N; Attar H; Brodie E; Veidt M; Molotnikov A; Dargusch MS
    J Mech Behav Biomed Mater; 2019 Sep; 97():149-158. PubMed ID: 31121433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tantalum-incorporated hydroxyapatite coating on titanium implants: its mechanical and in vitro osteogenic properties.
    Lu RJ; Wang X; He HX; E LL; Li Y; Zhang GL; Li CJ; Ning CY; Liu HC
    J Mater Sci Mater Med; 2019 Oct; 30(10):111. PubMed ID: 31583537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro analysis and mechanical properties of twin screw extruded single-layered and coextruded multilayered poly(caprolactone) scaffolds seeded with human fetal osteoblasts for bone tissue engineering.
    Ergun A; Yu X; Valdevit A; Ritter A; Kalyon DM
    J Biomed Mater Res A; 2011 Dec; 99(3):354-66. PubMed ID: 22021183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-nano porous structured tantalum-coated dental implants promote osteogenic activity in vitro and enhance osseointegration in vivo.
    Cui J; Zhang S; Huang M; Mu X; Hei J; Yau V; He H
    J Biomed Mater Res A; 2023 Sep; 111(9):1358-1371. PubMed ID: 37009822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility.
    Liu J; Ruan J; Chang L; Yang H; Ruan W
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():503-512. PubMed ID: 28576015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure, mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys.
    Delvat E; Gordin DM; Gloriant T; Duval JL; Nagel MD
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):345-51. PubMed ID: 19627799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.