These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 20133034)

  • 21. Enhanced vulnerability assessment in karst areas by combining mapping with modeling approaches.
    Butscher C; Huggenberger P
    Sci Total Environ; 2009 Jan; 407(3):1153-63. PubMed ID: 18962828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A GIS-based vulnerability assessment of brine contamination to aquatic resources from oil and gas development in eastern Sheridan County, Montana.
    Preston TM; Chesley-Preston TL; Thamke JN
    Sci Total Environ; 2014 Feb; 472():1152-62. PubMed ID: 24364993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system.
    Babiker IS; Mohamed MA; Terao H; Kato K; Ohta K
    Environ Int; 2004 Feb; 29(8):1009-17. PubMed ID: 14680883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incorporating variations in pesticide catabolic activity into a GIS-based groundwater risk assessment.
    Posen P; Lovett A; Hiscock K; Evers S; Ward R; Reid B
    Sci Total Environ; 2006 Aug; 367(2-3):641-52. PubMed ID: 16580707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal.
    Shrestha S; Semkuyu DJ; Pandey VP
    Sci Total Environ; 2016 Jun; 556():23-35. PubMed ID: 26971207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of a groundwater contamination with vinyl chloride (VC) and precursor volatile organic compounds (VOC) by use of a geographical information system (GIS).
    Kistemann T; Hundhausen J; Herbst S; Classen T; Färber H
    Int J Hyg Environ Health; 2008 Jul; 211(3-4):308-17. PubMed ID: 17869578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated modeling environment for statewide assessment of groundwater vulnerability from pesticide use in agriculture.
    Eason A; Tim US; Wang X
    Pest Manag Sci; 2004 Aug; 60(8):739-45. PubMed ID: 15307665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping the groundwater vulnerability for pollution at the pan African scale.
    Ouedraogo I; Defourny P; Vanclooster M
    Sci Total Environ; 2016 Feb; 544():939-53. PubMed ID: 26771208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of sediments in urban drainage areas and relation analysis between sediments and inundation risk using GIS.
    Moojong P; Hwandon J; Minchul S
    Water Sci Technol; 2008; 58(4):811-7. PubMed ID: 18776616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Groundwater risk assessment at a heavily industrialised catchment and the associated impacts on a peri-urban wetland.
    Dimitriou E; Karaouzas I; Sarantakos K; Zacharias I; Bogdanos K; Diapoulis A
    J Environ Manage; 2008 Aug; 88(3):526-38. PubMed ID: 17499908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Groundwater resource assessment, categories, and typologies: case study, Andhra Pradesh, India.
    Raj P
    Environ Monit Assess; 2011 Feb; 173(1-4):777-88. PubMed ID: 20364313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China.
    Wang J; He J; Chen H
    Sci Total Environ; 2012 Aug; 432():216-26. PubMed ID: 22750168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Groundwater: the processes and global significance of aquifer degradation.
    Foster SS; Chilton PJ
    Philos Trans R Soc Lond B Biol Sci; 2003 Dec; 358(1440):1957-72. PubMed ID: 14728791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of drastic model and GIS: for assessing vulnerability in hard rock granitic aquifer.
    Prasad RK; Singh VS; Krishnamacharyulu SK; Banerjee P
    Environ Monit Assess; 2011 May; 176(1-4):143-55. PubMed ID: 20582738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined use of GIS and environmental indicators for assessment of chemical, physical and biological soil degradation in a Spanish Mediterranean region.
    de Paz JM; Sánchez J; Visconti F
    J Environ Manage; 2006 Apr; 79(2):150-62. PubMed ID: 16171939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A GIS-based multimedia watershed model: development and application.
    Coulibaly L; Labib ME; Hazen R
    Chemosphere; 2004 May; 55(7):1067-80. PubMed ID: 15051375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A GIS-Based GOD Model and Hazard Index Analysis: The Quaternary Coastal Collo Aquifer (NE-Algeria).
    Boulabeiz M; Klebingat S; Agaguenia S
    Ground Water; 2019 Jan; 57(1):166-176. PubMed ID: 30159889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of a numerical indicator of microbial contamination for karst springs.
    Butscher C; Auckenthaler A; Scheidler S; Huggenberger P
    Ground Water; 2011; 49(1):66-76. PubMed ID: 20180864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A prediction method for radon in groundwater using GIS and multivariate statistics.
    Skeppström K; Olofsson B
    Sci Total Environ; 2006 Aug; 367(2-3):666-80. PubMed ID: 16580708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrated GIS-based approach in assessing carcinogenic risks via food-chain exposure in arsenic-affected groundwater areas.
    Liang CP; Jang CS; Liu CW; Lin KH; Lin MC
    Environ Toxicol; 2010 Apr; 25(2):113-23. PubMed ID: 19260046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.