These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 20133363)

  • 1. Isethionate formation from taurine in Chromohalobacter salexigens: purification of sulfoacetaldehyde reductase.
    Krejčík Z; Hollemeyer K; Smits THM; Cook AM
    Microbiology (Reading); 2010 May; 156(Pt 5):1547-1555. PubMed ID: 20133363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isethionate as a product from taurine during nitrogen-limited growth of Klebsiella oxytoca TauN1.
    Styp von Rekowski K; Denger K; Cook AM
    Arch Microbiol; 2005 Aug; 183(5):325-30. PubMed ID: 15883781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans.
    Brüggemann C; Denger K; Cook AM; Ruff J
    Microbiology (Reading); 2004 Apr; 150(Pt 4):805-816. PubMed ID: 15073291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase.
    Krejcík Z; Denger K; Weinitschke S; Hollemeyer K; Paces V; Cook AM; Smits TH
    Arch Microbiol; 2008 Aug; 190(2):159-68. PubMed ID: 18506422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A five-gene cluster involved in utilization of taurine-nitrogen and excretion of sulfoacetaldehyde by Acinetobacter radioresistens SH164.
    Krejčík Z; Schleheck D; Hollemeyer K; Cook AM
    Arch Microbiol; 2012 Oct; 194(10):857-63. PubMed ID: 22588221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and structural investigation of sulfoacetaldehyde reductase from
    Zhou Y; Wei Y; Lin L; Xu T; Ang EL; Zhao H; Yuchi Z; Zhang Y
    Biochem J; 2019 Feb; 476(4):733-746. PubMed ID: 30718306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New structural insights into bacterial sulfoacetaldehyde and taurine metabolism.
    Rohwerder T
    Biochem J; 2020 Apr; 477(8):1367-1371. PubMed ID: 32322897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of
    Yang T; Shao YH; Guo LZ; Meng XL; Yu H; Lu WD
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32631860
    [No Abstract]   [Full Text] [Related]  

  • 9. Racemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of (S)-sulfolactate dehydrogenase.
    Denger K; Cook AM
    Microbiology (Reading); 2010 Mar; 156(Pt 3):967-974. PubMed ID: 20007648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-enabled analysis of the utilization of taurine as sole source of carbon or of nitrogen by Rhodobacter sphaeroides 2.4.1.
    Denger K; Smits THM; Cook AM
    Microbiology (Reading); 2006 Nov; 152(Pt 11):3197-3206. PubMed ID: 17074891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene clusters involved in isethionate degradation by terrestrial and marine bacteria.
    Weinitschke S; Sharma PI; Stingl U; Cook AM; Smits TH
    Appl Environ Microbiol; 2010 Jan; 76(2):618-21. PubMed ID: 19933343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of a new sulfoacetaldehyde reductase from the human gut bacterium
    Zhou Y; Wei Y; Nanjaraj Urs AN; Lin L; Xu T; Hu Y; Ang EL; Zhao H; Yuchi Z; Zhang Y
    Biosci Rep; 2019 Jun; 39(6):. PubMed ID: 31123167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Pathway for Isethionate Dissimilation in Bacillus krulwichiae.
    Tong Y; Wei Y; Hu Y; Ang EL; Zhao H; Zhang Y
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycine Betaine Monooxygenase, an Unusual Rieske-Type Oxygenase System, Catalyzes the Oxidative
    Shao YH; Guo LZ; Zhang YQ; Yu H; Zhao BS; Pang HQ; Lu WD
    Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29703733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nitrogenase-like enzyme is involved in the novel anaerobic assimilation pathway of a sulfonate, isethionate, in the photosynthetic bacterium
    Morimoto Y; Uesaka K; Fujita Y; Yamamoto H
    mSphere; 2024 Sep; 9(9):e0049824. PubMed ID: 39191391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates.
    Weinitschke S; Denger K; Cook AM; Smits THM
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3055-3060. PubMed ID: 17768248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway.
    Mayer J; Cook AM
    J Bacteriol; 2009 Oct; 191(19):6052-8. PubMed ID: 19648235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16.
    Denger K; Lehmann S; Cook AM
    Microbiology (Reading); 2011 Oct; 157(Pt 10):2983-2991. PubMed ID: 21757489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gene cluster for taurine sulfur assimilation in an anaerobic human gut bacterium.
    Xing M; Wei Y; Hua G; Li M; Nanjaraj Urs AN; Wang F; Hu Y; Zhai W; Liu Y; Ang EL; Zhao H; Zhang Y
    Biochem J; 2019 Aug; 476(15):2271-2279. PubMed ID: 31350331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium
    Peck SC; Denger K; Burrichter A; Irwin SM; Balskus EP; Schleheck D
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):3171-3176. PubMed ID: 30718429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.