BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20133437)

  • 1. Lactic acidosis in vivo: testing the link between lactate generation and H+ accumulation in ischemic mouse muscle.
    Marcinek DJ; Kushmerick MJ; Conley KE
    J Appl Physiol (1985); 2010 Jun; 108(6):1479-86. PubMed ID: 20133437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What does glycolysis make and why is it important?
    Brooks GA
    J Appl Physiol (1985); 2010 Jun; 108(6):1450-1. PubMed ID: 20339007
    [No Abstract]   [Full Text] [Related]  

  • 3. Maturational changes in cerebral lactate and acid clearance following ischemia measured in vivo using magnetic resonance spectroscopy and microdialysis.
    Corbett R; Laptook A; Kim B; Tollefsbol G; Silmon S; Garcia D
    Brain Res Dev Brain Res; 1999 Mar; 113(1-2):37-46. PubMed ID: 10064872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hypoxia on glucose-modulated cerebral lactic acidosis, agonal glycolytic rates, and energy utilization.
    Corbett RJ; Laptook AR; Sterett R; Tollefsbol G; Garcia D
    Pediatr Res; 1996 Mar; 39(3):477-86. PubMed ID: 8929869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shaking up glycolysis: Sustained, high lactate flux during aerobic rattling.
    Kemper WF; Lindstedt SL; Hartzler LK; Hicks JW; Conley KE
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):723-8. PubMed ID: 11120879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactic acid and exercise performance : culprit or friend?
    Cairns SP
    Sports Med; 2006; 36(4):279-91. PubMed ID: 16573355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adrenergic antagonists reduce lactic acidosis in response to hemorrhagic shock.
    Luchette FA; Robinson BR; Friend LA; McCarter F; Frame SB; James JH
    J Trauma; 1999 May; 46(5):873-80. PubMed ID: 10338406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle lactate overproduction during metformin intoxication: An animal study with reverse microdialysis.
    Protti A; Properzi P; Magnoni S; Santini A; Langer T; Guenzani S; Ferrero S; Bassani G; Stocchetti N; Gattinoni L
    Toxicol Lett; 2016 Jul; 255():43-6. PubMed ID: 27178268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Lactate and acidosis yet again?
    Tabata I
    J Appl Physiol (1985); 2011 May; 110(5):1495-6. PubMed ID: 21717610
    [No Abstract]   [Full Text] [Related]  

  • 10. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Lactate and acidosis yet again?
    Crampin EJ
    J Appl Physiol (1985); 2011 May; 110(5):1495. PubMed ID: 21717609
    [No Abstract]   [Full Text] [Related]  

  • 11. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Lactate and acidosis yet again?
    Meyer RA; Wiseman RW
    J Appl Physiol (1985); 2011 May; 110(5):1495. PubMed ID: 21717608
    [No Abstract]   [Full Text] [Related]  

  • 12. Glycolytic ATP production estimated from 31P magnetic resonance spectroscopy measurements during ischemic exercise in vivo.
    Wackerhage H; Mueller K; Hoffmann U; Leyk D; Essfeld D; Zange J
    MAGMA; 1996; 4(3-4):151-5. PubMed ID: 9220403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hyperglycemia on the time course of changes in energy metabolism and pH during global cerebral ischemia and reperfusion in rats: correlation of 1H and 31P NMR spectroscopy with fatty acid and excitatory amino acid levels.
    Widmer H; Abiko H; Faden AI; James TL; Weinstein PR
    J Cereb Blood Flow Metab; 1992 May; 12(3):456-68. PubMed ID: 1569139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature and pH dependence of energy balance by (31)P- and (1)H-MRS in anaerobic frog muscle.
    Vezzoli A; Gussoni M; Greco F; Zetta L; Cerretelli P
    Biochim Biophys Acta; 2004 Feb; 1608(2-3):163-70. PubMed ID: 14871494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invited review: Quantifying proton exchange from chemical reactions - Implications for the biochemistry of metabolic acidosis.
    Robergs RA
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Sep; 235():29-45. PubMed ID: 31071454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of intracellular pH in cortical brain slices following anoxia studied by nuclear magnetic resonance spectroscopy: role of lactate removal, extracellular sodium and sodium/hydrogen exchange.
    Pirttilä TR; Kauppinen RA
    Neuroscience; 1992; 47(1):155-64. PubMed ID: 1315933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beneficial effects of L-canavanine, a selective inhibitor of inducible nitric oxide synthase, on lactate metabolism and muscle high energy phosphates during endotoxic shock in rats.
    Levy B; Valtier M; de Chillou C; Bollaert PE; Cane D; Mallie JP
    Shock; 1999 Feb; 11(2):98-103. PubMed ID: 10030795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Common phenotype of resting mouse extensor digitorum longus and soleus muscles: equal ATPase and glycolytic flux during transient anoxia.
    Vinnakota KC; Rusk J; Palmer L; Shankland E; Kushmerick MJ
    J Physiol; 2010 Jun; 588(Pt 11):1961-83. PubMed ID: 20308252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioenergetics of rabbit skeletal muscle during hypoxemia and ischemia.
    Gutierrez G; Pohil RJ; Andry JM; Strong R; Narayana P
    J Appl Physiol (1985); 1988 Aug; 65(2):608-16. PubMed ID: 3170412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.