These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 20133571)

  • 61. Multiple conformations of the FliG C-terminal domain provide insight into flagellar motor switching.
    Lam KH; Ip WS; Lam YW; Chan SO; Ling TK; Au SW
    Structure; 2012 Feb; 20(2):315-25. PubMed ID: 22325779
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microscopy of single F(o) F(1) -ATP synthases--the unraveling of motors, gears, and controls.
    Börsch M
    IUBMB Life; 2013 Mar; 65(3):227-37. PubMed ID: 23378185
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Architecture and Assembly of the Bacterial Flagellar Motor Complex.
    Morimoto YV; Minamino T
    Subcell Biochem; 2021; 96():297-321. PubMed ID: 33252734
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Oligomeric states of the SecA and SecYEG core components of the bacterial Sec translocon.
    Rusch SL; Kendall DA
    Biochim Biophys Acta; 2007 Jan; 1768(1):5-12. PubMed ID: 17011510
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Use of restrained molecular dynamics to predict the conformations of phosphorylated receiver domains in two-component signaling systems.
    Foster CA; West AH
    Proteins; 2017 Jan; 85(1):155-176. PubMed ID: 27802580
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Segmental motions, not a two-state concerted switch, underlie allostery in CheY.
    McDonald LR; Boyer JA; Lee AL
    Structure; 2012 Aug; 20(8):1363-73. PubMed ID: 22727815
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fumarate modulates bacterial flagellar rotation by lowering the free energy difference between the clockwise and counterclockwise states of the motor.
    Prasad K; Caplan SR; Eisenbach M
    J Mol Biol; 1998 Jul; 280(5):821-8. PubMed ID: 9671552
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Novel Insights into Conformational Rearrangements of the Bacterial Flagellar Switch Complex.
    Sakai T; Miyata T; Terahara N; Mori K; Inoue Y; Morimoto YV; Kato T; Namba K; Minamino T
    mBio; 2019 Apr; 10(2):. PubMed ID: 30940700
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bacterial flagellar switching: a molecular mechanism directed by the logic of an electric motor.
    Maiti S; Mitra P
    J Mol Model; 2018 Sep; 24(10):280. PubMed ID: 30215219
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism.
    Paul K; Nieto V; Carlquist WC; Blair DF; Harshey RM
    Mol Cell; 2010 Apr; 38(1):128-39. PubMed ID: 20346719
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A hidden state in the turnover of a functioning membrane protein complex.
    Shi H; Ma S; Zhang R; Yuan J
    Sci Adv; 2019 Mar; 5(3):eaau6885. PubMed ID: 30906857
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Architecture of the Flagellar Switch Complex of Escherichia coli: Conformational Plasticity of FliG and Implications for Adaptive Remodeling.
    Kim EA; Panushka J; Meyer T; Carlisle R; Baker S; Ide N; Lynch M; Crane BR; Blair DF
    J Mol Biol; 2017 May; 429(9):1305-1320. PubMed ID: 28259628
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Polar location of the chemoreceptor complex in the Escherichia coli cell.
    Maddock JR; Shapiro L
    Science; 1993 Mar; 259(5102):1717-23. PubMed ID: 8456299
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The switching dynamics of the bacterial flagellar motor.
    van Albada SB; Tănase-Nicola S; ten Wolde PR
    Mol Syst Biol; 2009; 5():316. PubMed ID: 19888211
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Non-genetic individuality in Escherichia coli motor switching.
    Mora T; Bai F; Che YS; Minamino T; Namba K; Wingreen NS
    Phys Biol; 2011 Apr; 8(2):024001. PubMed ID: 21422514
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Insight into adaptive remodeling of the rotor ring complex of the bacterial flagellar motor.
    Kinoshita M; Furukawa Y; Uchiyama S; Imada K; Namba K; Minamino T
    Biochem Biophys Res Commun; 2018 Jan; 496(1):12-17. PubMed ID: 29294326
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ligand depletion in vivo modulates the dynamic range and cooperativity of signal transduction.
    Edelstein SJ; Stefan MI; Le Novère N
    PLoS One; 2010 Jan; 5(1):e8449. PubMed ID: 20052284
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor.
    Lloyd SA; Whitby FG; Blair DF; Hill CP
    Nature; 1999 Jul; 400(6743):472-5. PubMed ID: 10440379
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular motors of the bacterial flagella.
    Minamino T; Imada K; Namba K
    Curr Opin Struct Biol; 2008 Dec; 18(6):693-701. PubMed ID: 18848888
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An electrostatic mechanism closely reproducing observed behavior in the bacterial flagellar motor.
    Walz D; Caplan SR
    Biophys J; 2000 Feb; 78(2):626-51. PubMed ID: 10653777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.