BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 20133658)

  • 21. The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms.
    Reeder BJ
    Antioxid Redox Signal; 2010 Oct; 13(7):1087-123. PubMed ID: 20170402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenolic antioxidants tert-butyl-bisphenol and vitamin E decrease oxidative stress and enhance vascular function in an animal model of rhabdomyolysis yet do not improve acute renal dysfunction.
    Kim HB; Shanu A; Wood S; Parry SN; Collet M; McMahon A; Witting PK
    Free Radic Res; 2011 Sep; 45(9):1000-12. PubMed ID: 21726176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death.
    Guerrero-Hue M; García-Caballero C; Palomino-Antolín A; Rubio-Navarro A; Vázquez-Carballo C; Herencia C; Martín-Sanchez D; Farré-Alins V; Egea J; Cannata P; Praga M; Ortiz A; Egido J; Sanz AB; Moreno JA
    FASEB J; 2019 Aug; 33(8):8961-8975. PubMed ID: 31034781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidation of thiamine on reaction with nitrogen dioxide generated by ferric myoglobin and hemoglobin in the presence of nitrite and hydrogen peroxide.
    Stepuro II; Oparin AY; Stsiapura VI; Maskevich SA; Titov VY
    Biochemistry (Mosc); 2012 Jan; 77(1):41-55. PubMed ID: 22339632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heme protein radicals: formation, fate, and biological consequences.
    Giulivi C; Cadenas E
    Free Radic Biol Med; 1998 Jan; 24(2):269-79. PubMed ID: 9433902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The peroxidatic activities of Myoglobin and Hemoglobin, their pathological consequences and possible medical interventions.
    Wilson MT; Reeder BJ
    Mol Aspects Med; 2022 Apr; 84():101045. PubMed ID: 34654576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluations of lipid peroxidation and inflammation in short-term glycerol-induced acute kidney injury in rats.
    Nara A; Yajima D; Nagasawa S; Abe H; Hoshioka Y; Iwase H
    Clin Exp Pharmacol Physiol; 2016 Nov; 43(11):1080-1086. PubMed ID: 27529136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics and mechanism of formation of peroxide-induced heme to protein cross-linking in myoglobin.
    Reeder BJ; Svistunenko DA; Sharpe MA; Wilson MT
    Biochemistry; 2002 Jan; 41(1):367-75. PubMed ID: 11772036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Absence of hemoprotein-associated free radical events following oxidant challenge of crosslinked hemoglobin-superoxide dismutase catalase.
    D'Agnillo F; Chang TM
    Free Radic Biol Med; 1998 Apr; 24(6):906-12. PubMed ID: 9607600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron paramagnetic resonance and electron-nuclear double resonance studies of the reactions of cryogenerated hydroperoxoferric-hemoprotein intermediates.
    Davydov R; Laryukhin M; Ledbetter-Rogers A; Sono M; Dawson JH; Hoffman BM
    Biochemistry; 2014 Aug; 53(30):4894-903. PubMed ID: 25046203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Desferrioxamine inhibits production of cytotoxic heme to protein cross-linked myoglobin: a mechanism to protect against oxidative stress without iron chelation.
    Reeder BJ; Wilson MT
    Chem Res Toxicol; 2005 Jun; 18(6):1004-11. PubMed ID: 15962935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antioxidant depletion, lipid peroxidation, and impairment of calcium transport induced by air-blast overpressure in rat lungs.
    Elsayed NM; Tyurina YY; Tyurin VA; Menshikova EV; Kisin ER; Kagan VE
    Exp Lung Res; 1996; 22(2):179-200. PubMed ID: 8706635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of hypoxia and glutathione depletion on hemoglobin- and myoglobin-mediated oxidative stress toward endothelium.
    D'Agnillo F; Wood F; Porras C; Macdonald VW; Alayash AI
    Biochim Biophys Acta; 2000 Feb; 1495(2):150-9. PubMed ID: 10656972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perioperative intravenous acetaminophen attenuates lipid peroxidation in adults undergoing cardiopulmonary bypass: a randomized clinical trial.
    Billings FT; Petracek MR; Roberts LJ; Pretorius M
    PLoS One; 2015; 10(2):e0117625. PubMed ID: 25705899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxymyoglobin oxidation and membrane lipid peroxidation initiated by iron redox cycle: prevention of oxidation by enzymic and nonenzymic antioxidants.
    Gorelik S; Kanner J
    J Agric Food Chem; 2001 Dec; 49(12):5945-50. PubMed ID: 11743790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Concentration effects in myoglobin-catalyzed peroxidation of linoleate.
    Baron CP; Skibsted LH; Andersen HJ
    J Agric Food Chem; 2002 Feb; 50(4):883-8. PubMed ID: 11829662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Can gas replace protein function? CO abrogates the oxidative toxicity of myoglobin.
    Sher EA; Sholto AY; Shaklai M; Shaklai N
    PLoS One; 2014; 9(8):e104075. PubMed ID: 25111140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial free radical production induces lipid peroxidation during myohemoglobinuria.
    Zager RA
    Kidney Int; 1996 Mar; 49(3):741-51. PubMed ID: 8648915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Mechanisms and Novel Therapeutic Approaches to Rhabdomyolysis-Induced Acute Kidney Injury.
    Panizo N; Rubio-Navarro A; Amaro-Villalobos JM; Egido J; Moreno JA
    Kidney Blood Press Res; 2015; 40(5):520-32. PubMed ID: 26512883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immuno-spin trapping of hemoglobin and myoglobin radicals derived from nitrite-mediated oxidation.
    Keszler A; Mason RP; Hogg N
    Free Radic Biol Med; 2006 Feb; 40(3):507-15. PubMed ID: 16443166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.