BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20133746)

  • 1. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome.
    Abdelhakim AH; Sauer RT; Baker TA
    Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2437-42. PubMed ID: 20133746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX.
    Abdelhakim AH; Oakes EC; Sauer RT; Baker TA
    Mol Cell; 2008 Apr; 30(1):39-50. PubMed ID: 18406325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ClpX-mediated remodeling of mu transpososomes: selective unfolding of subunits destabilizes the entire complex.
    Burton BM; Williams TL; Baker TA
    Mol Cell; 2001 Aug; 8(2):449-54. PubMed ID: 11545746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpX.
    Ling L; MontaƱo SP; Sauer RT; Rice PA; Baker TA
    J Mol Biol; 2015 Sep; 427(18):2966-82. PubMed ID: 25797169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase.
    Burton BM; Baker TA
    Protein Sci; 2005 Aug; 14(8):1945-54. PubMed ID: 16046622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex.
    Burton BM; Baker TA
    Chem Biol; 2003 May; 10(5):463-72. PubMed ID: 12770828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine.
    Glynn SE; Martin A; Nager AR; Baker TA; Sauer RT
    Cell; 2009 Nov; 139(4):744-56. PubMed ID: 19914167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2008 Feb; 29(4):441-50. PubMed ID: 18313382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine.
    Glynn SE; Nager AR; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2012 May; 19(6):616-22. PubMed ID: 22562135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hinge-Linker Elements in the AAA+ Protein Unfoldase ClpX Mediate Intersubunit Communication, Assembly, and Mechanical Activity.
    Bell TA; Baker TA; Sauer RT
    Biochemistry; 2018 Dec; 57(49):6787-6796. PubMed ID: 30418765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA repair by the cryptic endonuclease activity of Mu transposase.
    Choi W; Harshey RM
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10014-9. PubMed ID: 20167799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile action of Escherichia coli ClpXP as protease or molecular chaperone for bacteriophage Mu transposition.
    Jones JM; Welty DJ; Nakai H
    J Biol Chem; 1998 Jan; 273(1):459-65. PubMed ID: 9417104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine.
    Stinson BM; Nager AR; Glynn SE; Schmitz KR; Baker TA; Sauer RT
    Cell; 2013 Apr; 153(3):628-39. PubMed ID: 23622246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Nov; 15(11):1147-51. PubMed ID: 18931677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disassembly of the Mu transposase tetramer by the ClpX chaperone.
    Levchenko I; Luo L; Baker TA
    Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.
    Baytshtok V; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5377-82. PubMed ID: 25870262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species.
    Chowdhury T; Chien P; Ebrahim S; Sauer RT; Baker TA
    Protein Sci; 2010 Feb; 19(2):242-54. PubMed ID: 20014030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ClpX(P) generates mechanical force to unfold and translocate its protein substrates.
    Maillard RA; Chistol G; Sen M; Righini M; Tan J; Kaiser CM; Hodges C; Martin A; Bustamante C
    Cell; 2011 Apr; 145(3):459-69. PubMed ID: 21529717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX.
    Thibault G; Yudin J; Wong P; Tsitrin V; Sprangers R; Zhao R; Houry WA
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17724-9. PubMed ID: 17090685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.