These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20133747)

  • 21. Change of RNase P RNA function by single base mutation correlates with perturbation of metal ion binding in P4 as determined by NMR spectroscopy.
    Schmitz M
    Nucleic Acids Res; 2004; 32(21):6358-66. PubMed ID: 15576680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein-precursor tRNA contact leads to sequence-specific recognition of 5' leaders by bacterial ribonuclease P.
    Koutmou KS; Zahler NH; Kurz JC; Campbell FE; Harris ME; Fierke CA
    J Mol Biol; 2010 Feb; 396(1):195-208. PubMed ID: 19932118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidation of primary (alpha(3)N) and vestigial (alpha(5)) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins.
    Busenlehner LS; Weng TC; Penner-Hahn JE; Giedroc DP
    J Mol Biol; 2002 Jun; 319(3):685-701. PubMed ID: 12054863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA.
    Schmitz M; Tinoco I
    RNA; 2000 Sep; 6(9):1212-25. PubMed ID: 10999599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of individual nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA cleavage site by short-range photo-cross-linking.
    Christian EL; McPheeters DS; Harris ME
    Biochemistry; 1998 Dec; 37(50):17618-28. PubMed ID: 9860878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of metal ion binding sites within the hairpin ribozyme domains by NMR.
    Butcher SE; Allain FH; Feigon J
    Biochemistry; 2000 Mar; 39(9):2174-82. PubMed ID: 10694382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Function of heterologous and truncated RNase P proteins in Bacillus subtilis.
    Gösringer M; Hartmann RK
    Mol Microbiol; 2007 Nov; 66(3):801-13. PubMed ID: 17919279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unraveling the substrate-metal binding site of ferrochelatase: an X-ray absorption spectroscopic study.
    Ferreira GC; Franco R; Mangravita A; George GN
    Biochemistry; 2002 Apr; 41(15):4809-18. PubMed ID: 11939775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Importance of RNA-protein interactions in bacterial ribonuclease P structure and catalysis.
    Smith JK; Hsieh J; Fierke CA
    Biopolymers; 2007 Dec 5-15; 87(5-6):329-38. PubMed ID: 17868095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic studies of metal binding and metal selectivity in Bacillus subtilis BSco, a Homologue of the Yeast Mitochondrial Protein Sco1p.
    Andruzzi L; Nakano M; Nilges MJ; Blackburn NJ
    J Am Chem Soc; 2005 Nov; 127(47):16548-58. PubMed ID: 16305244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. X-ray absorption spectroscopy of metal site speciation in the metallo-β-lactamase BcII from Bacillus cereus.
    Breece RM; Llarrull LI; Tioni MF; Vila AJ; Tierney DL
    J Inorg Biochem; 2012 Jun; 111():182-6. PubMed ID: 22381913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solution structure of RNase P RNA.
    Kazantsev AV; Rambo RP; Karimpour S; Santalucia J; Tainer JA; Pace NR
    RNA; 2011 Jun; 17(6):1159-71. PubMed ID: 21531920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of the Bacillus subtilis RNase P with the 30S ribosomal subunit.
    Barrera A; Pan T
    RNA; 2004 Mar; 10(3):482-92. PubMed ID: 14970393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of catalytic metal ion ligands in ribozymes.
    Frederiksen JK; Piccirilli JA
    Methods; 2009 Oct; 49(2):148-66. PubMed ID: 19651216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein.
    Loria A; Pan T
    Nucleic Acids Res; 2001 May; 29(9):1892-7. PubMed ID: 11328872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A quantitative appraisal of the ambivalent metal ion binding properties of cytidine in aqueous solution and an estimation of the anti-syn energy barrier of cytidine derivatives.
    Knobloch B; Sigel H
    J Biol Inorg Chem; 2004 Apr; 9(3):365-73. PubMed ID: 15034770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential contact sites between the protein and RNA subunit in the Bacillus subtilis RNase P holoenzyme.
    Rox C; Feltens R; Pfeiffer T; Hartmann RK
    J Mol Biol; 2002 Jan; 315(4):551-60. PubMed ID: 11812129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding of C5 protein to P RNA enhances the rate constant for catalysis for P RNA processing of pre-tRNAs lacking a consensus (+ 1)/C(+ 72) pair.
    Sun L; Campbell FE; Yandek LE; Harris ME
    J Mol Biol; 2010 Feb; 395(5):1019-37. PubMed ID: 19917291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cryo-EM Structure of the Human Ribonuclease P Holoenzyme.
    Wu J; Niu S; Tan M; Huang C; Li M; Song Y; Wang Q; Chen J; Shi S; Lan P; Lei M
    Cell; 2018 Nov; 175(5):1393-1404.e11. PubMed ID: 30454648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning.
    Reiter NJ; Osterman AK; Mondragón A
    Nucleic Acids Res; 2012 Nov; 40(20):10384-93. PubMed ID: 22904083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.