These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20134085)

  • 1. Single crystal targets may improve soft-tissue contrast in megavoltage imaging by means of coherent bremsstrahlung.
    Koenig T; Oelfke U
    Phys Med Biol; 2010 Mar; 55(5):1327-41. PubMed ID: 20134085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A survey of target materials and orientations suitable for the production of coherent bremsstrahlung in megavoltage imaging.
    Koenig T; Ziegenhein P; Oelfke U
    Phys Med Biol; 2012 Apr; 57(8):2411-23. PubMed ID: 22470066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo feasibility study of orthogonal bremsstrahlung beams for improved radiation therapy imaging.
    Jabbari K; Sarfehnia A; Podgorsak EB; Seuntjens JP
    Phys Med Biol; 2007 Feb; 52(4):1171-84. PubMed ID: 17264378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broad and intense radiation accompanying multiple volume reflection of ultrarelativistic electrons in a bent crystal.
    Bandiera L; Bagli E; Guidi V; Mazzolari A; Berra A; Lietti D; Prest M; Vallazza E; De Salvador D; Tikhomirov V
    Phys Rev Lett; 2013 Dec; 111(25):255502. PubMed ID: 24483748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron beam treatment verification using measured and Monte Carlo predicted portal images.
    Jarry G; Verhaegen F
    Phys Med Biol; 2005 Nov; 50(21):4977-94. PubMed ID: 16237235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portal verification of high-energy electron beams using their photon contamination by film-cassette systems.
    Geyer P; Baus WW; Baumann M
    Strahlenther Onkol; 2006 Jan; 182(1):37-44. PubMed ID: 16404519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation and modelling of megavoltage photon beams for contrast-enhanced radiation therapy.
    Robar JL
    Phys Med Biol; 2006 Nov; 51(21):5487-504. PubMed ID: 17047265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical performance evaluation and comparison of a Compton medical imaging system and a collimated Anger camera for higher energy photon imaging.
    Han L; Rogers WL; Huh SS; Clinthorne N
    Phys Med Biol; 2008 Dec; 53(24):7029-45. PubMed ID: 19015578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are all photon radiations similar in large absorbers?--a comparison of electron spectra.
    Kellerer AM; Roos H
    Radiat Prot Dosimetry; 2005; 113(3):245-50. PubMed ID: 15695239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contamination of high-energy photon beams by scattered photons.
    Nilsson B; Brahme A
    Strahlentherapie; 1981 Mar; 157(3):181-6. PubMed ID: 6782713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of electrodes on the photon energy deposition in CVD-diamond dosimeters studied with the Monte Carlo code PENELOPE.
    Górka B; Nilsson B; Fernández-Varea JM; Svensson R; Brahme A
    Phys Med Biol; 2006 Aug; 51(15):3607-23. PubMed ID: 16861769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of beta+ activity generated by hard photons by means of PET.
    Möckel D; Müller H; Pawelke J; Sommer M; Will E; Enghardt W
    Phys Med Biol; 2007 May; 52(9):2515-30. PubMed ID: 17440249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of megavoltage electron beams delivered through a photon multi-leaf collimator (pMLC).
    du Plessis FC; Leal A; Stathakis S; Xiong W; Ma CM
    Phys Med Biol; 2006 Apr; 51(8):2113-29. PubMed ID: 16585849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of decoherence in electron microscopy.
    Howie A
    Ultramicroscopy; 2011 Jun; 111(7):761-7. PubMed ID: 20702040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of photon mass energy-transfer and mass energy-absorption coefficients.
    Seltzer SM
    Radiat Res; 1993 Nov; 136(2):147-70. PubMed ID: 8248472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling silicon diode energy response factors for use in therapeutic photon beams.
    Eklund K; Ahnesjö A
    Phys Med Biol; 2009 Oct; 54(20):6135-50. PubMed ID: 19779220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of soft X-ray and EUV transition radiation power emitted from the MIRRORCLE-type tabletop synchrotron.
    Toyosugi N; Yamada H; Minkov D; Morita M; Yamaguchi T; Imai S
    J Synchrotron Radiat; 2007 Mar; 14(Pt 2):212-8. PubMed ID: 17317923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects on electron beam penumbra using the photon MLC to reduce bremsstrahlung leakage for an add-on electron MLC.
    Olofsson L; Karlsson MG; Karlsson M
    Phys Med Biol; 2005 Mar; 50(6):1191-203. PubMed ID: 15798316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the existence of low-energy photons (<150 keV) in the unflattened x-ray beam from an ordinary radiotherapeutic target in a medical linear accelerator.
    Tsechanski A; Krutman Y; Faermann S
    Phys Med Biol; 2005 Dec; 50(23):5629-39. PubMed ID: 16306657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute Doubly Differential Cross Section for Bremsstrahlung Spectra Produced in 7.0 keV e^---Ag and Au Collisions.
    Goel SK; Shanker R
    J Xray Sci Technol; 1997 Jan; 7(3):331-7. PubMed ID: 21311130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.