These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Theoretical analysis of laboratory blackbodies. 1: a generalized integral equation. Geist J Appl Opt; 1973 Jun; 12(6):1325-30. PubMed ID: 20125516 [TBL] [Abstract][Full Text] [Related]
3. Spectral effective emissivities of nonisothermal cavities calculated by the Monte Carlo method. Sapritsky VI; Prokhorov AV Appl Opt; 1995 Sep; 34(25):5645-52. PubMed ID: 21060393 [TBL] [Abstract][Full Text] [Related]
4. Effective emissivity of a blackbody cavity formed by two coaxial tubes. Mei G; Zhang J; Zhao S; Xie Z Appl Opt; 2014 Apr; 53(11):2507-14. PubMed ID: 24787424 [TBL] [Abstract][Full Text] [Related]
5. General formulation for the integrated effective emissivity of any axisymmetric diffuse blackbody cavity. Chu Z; Bedford RE; Xu W; Liu X Appl Opt; 1989 May; 28(10):1826-9. PubMed ID: 20548750 [TBL] [Abstract][Full Text] [Related]
6. Design, development, and evaluation of a simple blackbody radiative source. Castrejón-García R; Castrejón-Pita JR; Castrejón-Pita AA Rev Sci Instrum; 2010 May; 81(5):055106. PubMed ID: 20515171 [TBL] [Abstract][Full Text] [Related]
7. Experimental design for estimating integrals by numerical quadrature, with applications to pharmacokinetic studies. Katz D; D'Argenio DZ Biometrics; 1983 Sep; 39(3):621-8. PubMed ID: 6652198 [TBL] [Abstract][Full Text] [Related]
8. Effective emissivities of isothermal blackbody cavities calculated by the Monte Carlo method using the three-component bidirectional reflectance distribution function model. Prokhorov A Appl Opt; 2012 May; 51(13):2322-32. PubMed ID: 22614407 [TBL] [Abstract][Full Text] [Related]
9. Numerical solution of the exact cavity equations of motion for an unstable optical resonator. Bowers MS; Moody SE Appl Opt; 1990 Sep; 29(27):3905-15. PubMed ID: 20577312 [TBL] [Abstract][Full Text] [Related]
11. An equation for the local thermal emissivity at the vertex of a diffuse conical or V-groove cavity. Kelly FJ Appl Opt; 1966 Jun; 5(6):925-7. PubMed ID: 20048982 [TBL] [Abstract][Full Text] [Related]
12. Radiant emission characteristics of a nonisothermal spherical cavity. Campanaro P; Ricolfi T Appl Opt; 1966 Aug; 5(8):1271-3. PubMed ID: 20057524 [TBL] [Abstract][Full Text] [Related]
13. VUV Radiometry with Hydrogen Arcs. 1: Principle of the Method and Comparisons with Blackbody Calibrations from 1650 A to 3600 A. Ott WR; Fieffe-Prevost P; Wiese WL Appl Opt; 1973 Jul; 12(7):1618-29. PubMed ID: 20125574 [TBL] [Abstract][Full Text] [Related]
14. Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder. Revercomb HE; Buijs H; Howell HB; Laporte DD; Smith WL; Sromovsky LA Appl Opt; 1988 Aug; 27(15):3210-8. PubMed ID: 20531920 [TBL] [Abstract][Full Text] [Related]
16. Wavelet algorithm for solving integral equations of molecular liquids. A test for the reference interaction site model. Chuev GN; Fedorov MV J Comput Chem; 2004 Aug; 25(11):1369-77. PubMed ID: 15185331 [TBL] [Abstract][Full Text] [Related]
17. Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurements. Datla RU; Stock K; Parr AC; Hoyt CC; Miller PJ; Foukal PV Appl Opt; 1992 Dec; 31(34):7219-25. PubMed ID: 20802586 [TBL] [Abstract][Full Text] [Related]
18. Radiation from a homogeneous isothermal sphere. Kattawar GW; Eisner M Appl Opt; 1970 Dec; 9(12):2685-90. PubMed ID: 20094340 [TBL] [Abstract][Full Text] [Related]