These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20134698)

  • 1. Dustsonde and lidar measurements of stratospheric aerosols: a comparison.
    Burton Northam G; Rosen JM; Harvey Melfi S; Pepin TJ; McCormick MP; Hofmann DJ; Fuller WH
    Appl Opt; 1974 Oct; 13(10):2416-21. PubMed ID: 20134698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar.
    Wandinger U; Ansmann A; Reichardt J; Deshler T
    Appl Opt; 1995 Dec; 34(36):8315-29. PubMed ID: 21068952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methodology for error analysis and simulation of lidar aerosol measurements.
    Russell PB; Swissler TJ; McCormick MP
    Appl Opt; 1979 Nov; 18(22):3783-97. PubMed ID: 20216694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-pulse-repetition-freqyency lidar system using a single telescope for transmission and reception.
    Argall PS; Jacka F
    Appl Opt; 1996 May; 35(15):2619-29. PubMed ID: 21085407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orbiting lidar simulations. 1: Aerosol and cloud measurements by an independent-wavelength technique.
    Russell PB; Morley BM; Livingston JM; Grams GW; Patterson EM
    Appl Opt; 1982 May; 21(9):1541-53. PubMed ID: 20389895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lidar measurement of atmospheric aerosol extinction profiles: a comparison between two techniques-Klett inversion and pure rotational Raman scattering methods.
    Mitev VM; Grigorov IV; Simeonov VB
    Appl Opt; 1992 Oct; 31(30):6469-74. PubMed ID: 20733864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of stratospheric vertical ozone distribution with a Xe-Cl lidar; estimated influence of aerosols.
    Uchino O; Maeda M; Shibata T; Hirono M; Fujiwara M
    Appl Opt; 1980 Dec; 19(24):4175-81. PubMed ID: 20309032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stratospheric temperature monitoring using a vibrational Raman lidar. Part 1: aerosols and ozone interferences.
    Faduilhe D; Keckhut P; Bencherif H; Robert L; Baldy S
    J Environ Monit; 2005 Apr; 7(4):357-64. PubMed ID: 15798803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements.
    Wang PH; McCormick MP; McMaster LR; Chu WP; Swissler TJ; Osborn MT; Russell PB; Oberbeck VR; Livingston J; Rosen JM; Hofmann DJ; Grams GW; Fuller WH; Yue GK
    J Geophys Res; 1989 Jun; 94(D6):8381-93. PubMed ID: 11539801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations.
    Sasano Y; Browell EV
    Appl Opt; 1989 May; 28(9):1670-9. PubMed ID: 20548724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.
    Xia H; Dou X; Shangguan M; Zhao R; Sun D; Wang C; Qiu J; Shu Z; Xue X; Han Y; Han Y
    Opt Express; 2014 Sep; 22(18):21775-89. PubMed ID: 25321553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ aerosol measurements from 1980 to 1987.
    Jäger H; Hofmann D
    Appl Opt; 1991 Jan; 30(1):127-38. PubMed ID: 20581956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement on lidar data processing for stratospheric aerosol measurements.
    Likura Y; Sugimoto N; Sasano Y; Shimzu H
    Appl Opt; 1987 Dec; 26(24):5299-306. PubMed ID: 20523520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivation of Mount Pinatubo stratospheric aerosol mean size distribution by means of a multiwavelength lidar.
    Guasta MD; Morandi M; Stefanutti L; Stein B; Wolf JP
    Appl Opt; 1994 Aug; 33(24):5690-7. PubMed ID: 20935970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dual-wavelength Mie lidar observations of tropospheric aerosols].
    Chi RL; Wu DC; Liu B; Zhou J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1468-72. PubMed ID: 19810510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species.
    Ben-David A
    Appl Opt; 1999 Apr; 38(12):2616-24. PubMed ID: 18319835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Instrument for Balloon-Borne
    Kalnajs LE; Deshler T
    J Geophys Res Atmos; 2022 Dec; 127(24):e2022JD037485. PubMed ID: 37033370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technique for correcting effects of long CO(2) laser pulses in aerosol-backscattered coherent lidar returns.
    Zhao Y; Hardesty RM
    Appl Opt; 1988 Jul; 27(13):2719-29. PubMed ID: 20531828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared lidar observations of stratospheric aerosols.
    Forrister HN; Roberts DW; Mercer AJ; Gimmestad GG
    Appl Opt; 2014 Jun; 53(16):D40-8. PubMed ID: 24922442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerosol-profile measurements in the lower troposphere with four-wavelength bistatic argon-ion lidar.
    Devara PC; Raj PE; Pandithurai G
    Appl Opt; 1995 Jul; 34(21):4416-25. PubMed ID: 21052276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.