These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 20136013)
1. [Super-cooling ability and its relations to body's water and fat contents of overwintering Hyphantrian cunea (Lepidoptera: Arcidae) pupae]. Ju Z; Li MG; Diao ZE; Xu YY Ying Yong Sheng Tai Xue Bao; 2009 Nov; 20(11):2763-7. PubMed ID: 20136013 [TBL] [Abstract][Full Text] [Related]
2. [Effects of different host plants on the cold-resistant substances in overwintering larvae of Carposina sasakii Matsumura (Lepidoptera: Carposinidae)]. Wang P; Yu Y; Xu YY; Li LL; Zhang AS; Men XY; Zhang SC; Zhou XH Ying Yong Sheng Tai Xue Bao; 2014 May; 25(5):1513-7. PubMed ID: 25129956 [TBL] [Abstract][Full Text] [Related]
4. Study on the physiology of diapause, cold hardiness and supercooling point of overwintering pupae of the pistachio fruit hull borer, Arimania comaroffi. Bemani M; Izadi H; Mahdian K; Khani A; Amin Samih M J Insect Physiol; 2012 Jul; 58(7):897-902. PubMed ID: 22542495 [TBL] [Abstract][Full Text] [Related]
5. [Dynamic changes of cold-resistant substances of overwintering Chilo suppressalis (Walker) larvae]. Qiang CK; Du YZ; Yu LY; Cui YD; Lu MX; Zheng FS Ying Yong Sheng Tai Xue Bao; 2008 Mar; 19(3):599-605. PubMed ID: 18533532 [TBL] [Abstract][Full Text] [Related]
6. Cold hardiness and deacclimation of overwintering Papilio zelicaon pupae. Williams CM; Nicolai A; Ferguson LV; Bernards MA; Hellmann JJ; Sinclair BJ Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():51-8. PubMed ID: 25139402 [TBL] [Abstract][Full Text] [Related]
7. Physiology of diapause and cold hardiness in the overwintering pupae of the fall webworm Hyphantria cunea (Lepidoptera: Arctiidae) in Japan. Li Y; Goto M; Ito S; Sato Y; Sasaki K; Goto N J Insect Physiol; 2001 Sep; 47(10):1181-1187. PubMed ID: 12770196 [TBL] [Abstract][Full Text] [Related]
8. Factors Influencing Cold Hardiness during Overwintering of Streltzoviella insularis (Lepidoptera: Cossidae). Pei J; Li C; Ren L; Zong S J Econ Entomol; 2020 Jun; 113(3):1254-1261. PubMed ID: 32161958 [TBL] [Abstract][Full Text] [Related]
9. Effects of transgenic Bt cotton on overwintering characteristics and survival of Helicoverpa armigera. Ouyang F; Liu Z; Yin J; Su J; Wang C; Ge F J Insect Physiol; 2011 Jan; 57(1):153-60. PubMed ID: 21034745 [TBL] [Abstract][Full Text] [Related]
10. Cold resistance in the lesser mealworm Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Salin C; Vernon P; Vannier G Cryo Letters; 2003; 24(2):111-8. PubMed ID: 12819832 [TBL] [Abstract][Full Text] [Related]
11. Effects of climate change on overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Huang J; Li J Int J Biometeorol; 2015 Jul; 59(7):863-76. PubMed ID: 25239518 [TBL] [Abstract][Full Text] [Related]
12. Effects of soil temperature and snow cover on the mortality of overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Huang J Int J Biometeorol; 2016 Jul; 60(7):977-89. PubMed ID: 26514355 [TBL] [Abstract][Full Text] [Related]
13. Effects of seasonal acclimation on cold tolerance and biochemical status of the carob moth, Ectomyelois ceratoniae Zeller, last instar larvae. Heydari M; Izadi H Bull Entomol Res; 2014 Oct; 104(5):592-600. PubMed ID: 24819226 [TBL] [Abstract][Full Text] [Related]
14. Physiological and biochemical changes in summer and winter diapause and non-diapause pupae of the cabbage armyworm, Mamestra brassicae L. during long-term cold acclimation. Ding L; Li Y; Goto M J Insect Physiol; 2003 Dec; 49(12):1153-9. PubMed ID: 14624887 [TBL] [Abstract][Full Text] [Related]
15. Role of membrane transport of water and glycerol in the freeze tolerance of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Izumi Y; Sonoda S; Yoshida H; Danks HV; Tsumuki H J Insect Physiol; 2006 Feb; 52(2):215-20. PubMed ID: 16359699 [TBL] [Abstract][Full Text] [Related]
16. Physiological and biochemical differences in diapause and non-diapause pupae of Xiao QH; He Z; Wu RW; Zhu DH Front Physiol; 2022; 13():1031654. PubMed ID: 36406979 [TBL] [Abstract][Full Text] [Related]
17. Diapause induction and termination in Hyphantria cunea (Drury) (Lepidoptera: Arctiinae). Chen C; Wei X; Xiao H; He H; Xia Q; Xue F PLoS One; 2014; 9(5):e98145. PubMed ID: 24878546 [TBL] [Abstract][Full Text] [Related]
18. Relationships between body weight of overwintering larvae and supercooling capacity; diapause intensity and post-diapause reproductive potential in Chilo suppressalis Walker. Xu S; Wang ML; Ding N; Ma WH; Li YN; Lei CL; Wang XP J Insect Physiol; 2011 May; 57(5):653-9. PubMed ID: 21192945 [TBL] [Abstract][Full Text] [Related]
19. RELATIONSHIP BETWEEN SUPERCOOLING CAPABILITY AND CRYOPROTECTANT CONTENT IN EGGS OF PARARCYPTERA MICROPTERA MERIDIONALIS (ORTHOPTERA: ACRYPTERIDAE). Zhou XR; Li YY; Li N; Pang BP Cryo Letters; 2015; 36(4):270-7. PubMed ID: 26576002 [TBL] [Abstract][Full Text] [Related]
20. Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker. Izumi Y; Sonoda S; Tsumuki H J Insect Physiol; 2007 Jul; 53(7):685-90. PubMed ID: 17543330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]