These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 20136182)
1. Auditory-model based robust feature selection for speech recognition. Koniaris C; Kuropatwinski M; Kleijn WB J Acoust Soc Am; 2010 Feb; 127(2):EL73-9. PubMed ID: 20136182 [TBL] [Abstract][Full Text] [Related]
2. A computer model of auditory efferent suppression: implications for the recognition of speech in noise. Brown GJ; Ferry RT; Meddis R J Acoust Soc Am; 2010 Feb; 127(2):943-54. PubMed ID: 20136217 [TBL] [Abstract][Full Text] [Related]
3. Statistical modeling of speech Poincaré sections in combination of frequency analysis to improve speech recognition performance. Jafari A; Almasganj F; Bidhendi MN Chaos; 2010 Sep; 20(3):033106. PubMed ID: 20887046 [TBL] [Abstract][Full Text] [Related]
5. Classification of stop place in consonant-vowel contexts using feature extrapolation of acoustic-phonetic features in telephone speech. Lee JW; Choi JY; Kang HG J Acoust Soc Am; 2012 Feb; 131(2):1536-46. PubMed ID: 22352523 [TBL] [Abstract][Full Text] [Related]
6. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures. Darch J; Milner B; Vaseghi S J Acoust Soc Am; 2008 Dec; 124(6):3989-4000. PubMed ID: 19206822 [TBL] [Abstract][Full Text] [Related]
7. A probabilistic framework for landmark detection based on phonetic features for automatic speech recognition. Juneja A; Espy-Wilson C J Acoust Soc Am; 2008 Feb; 123(2):1154-68. PubMed ID: 18247915 [TBL] [Abstract][Full Text] [Related]
8. Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition. Schädler M; Meyer BT; Kollmeier B J Acoust Soc Am; 2012 May; 131(5):4134-51. PubMed ID: 22559385 [TBL] [Abstract][Full Text] [Related]
9. Efficient auditory coding. Smith EC; Lewicki MS Nature; 2006 Feb; 439(7079):978-82. PubMed ID: 16495999 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear spectro-temporal features based on a cochlear model for automatic speech recognition in a noisy situation. Choi YS; Lee SY Neural Netw; 2013 Sep; 45():62-9. PubMed ID: 23558292 [TBL] [Abstract][Full Text] [Related]
11. Experiments with fast Fourier transform, linear predictive and cepstral coefficients in dysarthric speech recognition algorithms using hidden Markov Model. Polur PD; Miller GE IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):558-61. PubMed ID: 16425838 [TBL] [Abstract][Full Text] [Related]
12. Analysis of acoustic parameters for consonant voicing classification in clean and telephone speech. Lee SM; Choi JY J Acoust Soc Am; 2012 Mar; 131(3):EL197-202. PubMed ID: 22423808 [TBL] [Abstract][Full Text] [Related]
13. Automatic speech recognition using a predictive echo state network classifier. Skowronski MD; Harris JG Neural Netw; 2007 Apr; 20(3):414-23. PubMed ID: 17556115 [TBL] [Abstract][Full Text] [Related]
14. Microscopic prediction of speech recognition for listeners with normal hearing in noise using an auditory model. Jürgens T; Brand T J Acoust Soc Am; 2009 Nov; 126(5):2635-48. PubMed ID: 19894841 [TBL] [Abstract][Full Text] [Related]
15. Acoustic sleepiness detection: framework and validation of a speech-adapted pattern recognition approach. Krajewski J; Batliner A; Golz M Behav Res Methods; 2009 Aug; 41(3):795-804. PubMed ID: 19587194 [TBL] [Abstract][Full Text] [Related]
16. Noise-robust speech recognition through auditory feature detection and spike sequence decoding. Schafer PB; Jin DZ Neural Comput; 2014 Mar; 26(3):523-56. PubMed ID: 24320849 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of electrolarynx speech based on auditory masking. Liu H; Zhao Q; Wan M; Wang S IEEE Trans Biomed Eng; 2006 May; 53(5):865-74. PubMed ID: 16686409 [TBL] [Abstract][Full Text] [Related]
19. Speech perception of noise with binary gains. Wang D; Kjems U; Pedersen MS; Boldt JB; Lunner T J Acoust Soc Am; 2008 Oct; 124(4):2303-7. PubMed ID: 19062868 [TBL] [Abstract][Full Text] [Related]
20. Modeling the use of durational information in human spoken-word recognition. Scharenborg O J Acoust Soc Am; 2010 Jun; 127(6):3758-70. PubMed ID: 20550274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]