BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20136199)

  • 1. Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients.
    Groby JP; Ogam E; De Ryck L; Sebaa N; Lauriks W
    J Acoust Soc Am; 2010 Feb; 127(2):764-72. PubMed ID: 20136199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves.
    Fellah ZE; Fellah M; Mitri FG; Sebaa N; Depollier C; Lauriks W
    Rev Sci Instrum; 2007 Nov; 78(11):114902. PubMed ID: 18052497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of all six parameters of Johnson-Champoux-Allard-Lafarge model for acoustical porous materials from impedance tube measurements.
    Jaouen L; Gourdon E; Glé P
    J Acoust Soc Am; 2020 Oct; 148(4):1998. PubMed ID: 33138525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustical determination of the parameters governing thermal dissipation in porous media.
    Olny X; Panneton R
    J Acoust Soc Am; 2008 Feb; 123(2):814-24. PubMed ID: 18247886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves.
    Fellah ZE; Depollier C; Berger S; Lauriks W; Trompette P; Chapelon JY
    J Acoust Soc Am; 2003 Nov; 114(5):2561-9. PubMed ID: 14649992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring static thermal permeability and inertial factor of rigid porous materials (L).
    Sadouki M; Fellah M; Fellah ZE; Ogam E; Sebaa N; Mitri FG; Depollier C
    J Acoust Soc Am; 2011 Nov; 130(5):2627-30. PubMed ID: 22087887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements.
    Niskanen M; Groby JP; Duclos A; Dazel O; Le Roux JC; Poulain N; Huttunen T; Lähivaara T
    J Acoust Soc Am; 2017 Oct; 142(4):2407. PubMed ID: 29092615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing rigid frame porous layer absorption with three-dimensional periodic irregularities.
    Groby JP; Brouard B; Dazel O; Nennig B; Kelders L
    J Acoust Soc Am; 2013 Feb; 133(2):821-31. PubMed ID: 23363101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence.
    Fellah ZE; Berger S; Lauriks W; Depollier C; Aristégui C; Chapelon JY
    J Acoust Soc Am; 2003 May; 113(5):2424-33. PubMed ID: 12765361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain.
    De Ryck L; Lauriks W; Leclaire P; Groby JP; Wirgin A; Depollier C
    J Acoust Soc Am; 2008 Sep; 124(3):1591-606. PubMed ID: 19045651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of characteristic impedance and wave number of porous material using pulse-tube and transfer-matrix methods.
    Sun L; Hou H; Dong LY; Wan FR
    J Acoust Soc Am; 2009 Dec; 126(6):3049-56. PubMed ID: 20000918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
    Ogam E; Depollier C; Fellah ZE
    Rev Sci Instrum; 2010 Sep; 81(9):094902. PubMed ID: 20887001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic measurements on poroelastic slabs: determination of reflection and transmission coefficients and processing for Biot input parameters.
    Jocker J; Smeulders D
    Ultrasonics; 2009 Mar; 49(3):319-30. PubMed ID: 19081590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflection and transmission at normal incidence onto air-saturated porous materials and direct measurements based on parametric demodulated ultrasonic waves.
    Castagnède B; Saeid M; Moussatov A; Gusev V; Tournat V
    Ultrasonics; 2006 Feb; 44(2):221-9. PubMed ID: 16430937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material.
    Fellah ZE; Fellah M; Lauriks W; Depollier C
    J Acoust Soc Am; 2003 Jan; 113(1):61-72. PubMed ID: 12558247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous material characterization--ultrasonic method for estimation of tortuosity and characteristic length using a barometric chamber.
    Moussatov A; Ayrault C; Castagnède B
    Ultrasonics; 2001 Apr; 39(3):195-202. PubMed ID: 11350000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of compressed earth blocks using low frequency guided acoustic waves.
    Ben Mansour M; Ogam E; Fellah ZE; Soukaina Cherif A; Jelidi A; Ben Jabrallah S
    J Acoust Soc Am; 2016 May; 139(5):2551. PubMed ID: 27250150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation.
    Guan W; Hu H; He X
    J Acoust Soc Am; 2009 Apr; 125(4):1942-50. PubMed ID: 19354370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving acoustic wave propagation models in highly attenuating porous materials.
    Bouchendouka A; Fellah ZEA; Nguyen CT; Ogam E; Perrot C; Duval A; Depollier C
    J Acoust Soc Am; 2024 Jan; 155(1):206-217. PubMed ID: 38180154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymptotic limits of some models for sound propagation in porous media and the assignment of the pore characteristic lengths.
    Horoshenkov KV; Groby JP; Dazel O
    J Acoust Soc Am; 2016 May; 139(5):2463. PubMed ID: 27250142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.