These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20136222)

  • 1. Effects of a curved vocal tract with grid-generated tongue profile on low-order formants.
    Milenkovic PH; Yaddanapudi S; Vorperian HK; Kent RD
    J Acoust Soc Am; 2010 Feb; 127(2):1002-13. PubMed ID: 20136222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vowel category dependence of the relationship between palate height, tongue height, and oral area.
    Hasegawa-Johnson M; Pizza S; Alwan A; Cha JS; Haker K
    J Speech Lang Hear Res; 2003 Jun; 46(3):738-53. PubMed ID: 14697000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three Professional Singers' Vocal Tract Dimensions in Operatic Singing, Kulning, and Edge-A Multiple Case Study Examining Loud Singing.
    Ikävalko T; Laukkanen AM; McAllister A; Eklund R; Lammentausta E; Leppävuori M; Nieminen MT
    J Voice; 2024 Sep; 38(5):1253.e11-1253.e27. PubMed ID: 35277318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the relationship between palate shape and articulatory behavior.
    Brunner J; Fuchs S; Perrier P
    J Acoust Soc Am; 2009 Jun; 125(6):3936-49. PubMed ID: 19507976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional MR with use of FLASH sequences in the evaluation of the phono-articulatory tract.
    Meduri S; Bazzocchi M; Zuiani C; Falcone B; Bertino G; Marioni G
    MAGMA; 1999 Oct; 9(1-2):5-15. PubMed ID: 10555168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses of vocal tract cross-distance to area mapping: an investigation of a set of vowel images.
    McGowan RS; Jackson MT; Berger MA
    J Acoust Soc Am; 2012 Jan; 131(1):424-34. PubMed ID: 22280604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A radiological assessment of the oropharynx with special reference to tomography.
    Hynes DM
    Clin Radiol; 1970 Oct; 21(4):407-14. PubMed ID: 5476805
    [No Abstract]   [Full Text] [Related]  

  • 8. Generating vocal tract shapes from formant frequencies.
    Ladefoged P; Harshman R; Goldstein L; Rice L
    J Acoust Soc Am; 1978 Oct; 64(4):1027-35. PubMed ID: 744826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the effect of palate shape on the articulatory-acoustics mapping.
    Bakst S; Johnson K
    J Acoust Soc Am; 2018 Jul; 144(1):EL71. PubMed ID: 30075643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroglottographic study of seven semi-occluded exercises: LaxVox, straw, lip-trill, tongue-trill, humming, hand-over-mouth, and tongue-trill combined with hand-over-mouth.
    Andrade PA; Wood G; Ratcliffe P; Epstein R; Pijper A; Svec JG
    J Voice; 2014 Sep; 28(5):589-95. PubMed ID: 24560003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interspeaker variability in hard palate morphology and vowel production.
    Lammert A; Proctor M; Narayanan S
    J Speech Lang Hear Res; 2013 Dec; 56(6):S1924-33. PubMed ID: 24687447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Region segmentation in the frequency domain applied to upper airway real-time magnetic resonance images.
    Bresch E; Narayanan S
    IEEE Trans Med Imaging; 2009 Mar; 28(3):323-38. PubMed ID: 19244005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to stretch and shrink vowel systems: results from a vowel normalization procedure.
    Geng C; Mooshammer C
    J Acoust Soc Am; 2009 May; 125(5):3278-88. PubMed ID: 19425670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limits on tongue deformation--Diana monkey formants and the impossible vocal tract shapes proposed by Riede et al. (2005).
    Lieberman P
    J Hum Evol; 2006 Feb; 50(2):219-21; discussion 222-5. PubMed ID: 16376410
    [No Abstract]   [Full Text] [Related]  

  • 15. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings.
    Bouchard KE; Conant DF; Anumanchipalli GK; Dichter B; Chaisanguanthum KS; Johnson K; Chang EF
    PLoS One; 2016; 11(3):e0151327. PubMed ID: 27019106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A magnetic resonance imaging-based articulatory and acoustic study of "retroflex" and "bunched" American English /r/.
    Zhou X; Espy-Wilson CY; Boyce S; Tiede M; Holland C; Choe A
    J Acoust Soc Am; 2008 Jun; 123(6):4466-81. PubMed ID: 18537397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of acoustic-to-articulatory inversion of speech by analysis-by-synthesis using chain matrices and the Maeda articulatory model.
    Panchapagesan S; Alwan A
    J Acoust Soc Am; 2011 Apr; 129(4):2144-62. PubMed ID: 21476670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of vocal tract length during early childhood: a magnetic resonance imaging study.
    Vorperian HK; Kent RD; Lindstrom MJ; Kalina CM; Gentry LR; Yandell BS
    J Acoust Soc Am; 2005 Jan; 117(1):338-50. PubMed ID: 15704426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the control parameters of an articulatory model from electromagnetic articulograph data.
    Toutios A; Ouni S; Laprie Y
    J Acoust Soc Am; 2011 May; 129(5):3245-57. PubMed ID: 21568426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The acoustical significance of tongue, lip, and larynx maneuvers in rounded palatal vowels.
    Wood S
    J Acoust Soc Am; 1986 Aug; 80(2):391-401. PubMed ID: 3745671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.