These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 20136633)
1. Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea. Dulermo T; Rascle C; Billon-Grand G; Gout E; Bligny R; Cotton P Biochem J; 2010 Mar; 427(2):323-32. PubMed ID: 20136633 [TBL] [Abstract][Full Text] [Related]
2. Mannitol metabolism in the phytopathogenic fungus Alternaria alternata. Vélëz H; Glassbrook NJ; Daub ME Fungal Genet Biol; 2007 Apr; 44(4):258-68. PubMed ID: 17092745 [TBL] [Abstract][Full Text] [Related]
3. Dynamic carbon transfer during pathogenesis of sunflower by the necrotrophic fungus Botrytis cinerea: from plant hexoses to mannitol. Dulermo T; Rascle C; Chinnici G; Gout E; Bligny R; Cotton P New Phytol; 2009; 183(4):1149-1162. PubMed ID: 19500266 [TBL] [Abstract][Full Text] [Related]
4. Polyol-specific long-chain dehydrogenases/reductases of mannitol metabolism in Aspergillus fumigatus: biochemical characterization and pH studies of mannitol 2-dehydrogenase and mannitol-1-phosphate 5-dehydrogenase. Krahulec S; Armao GC; Bubner P; Klimacek M; Nidetzky B Chem Biol Interact; 2009 Mar; 178(1-3):274-82. PubMed ID: 18983992 [TBL] [Abstract][Full Text] [Related]
5. Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum. Solomon PS; Tan KC; Oliver RP Mol Plant Microbe Interact; 2005 Feb; 18(2):110-5. PubMed ID: 15720079 [TBL] [Abstract][Full Text] [Related]
6. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471 [TBL] [Abstract][Full Text] [Related]
7. Antifungal activity and biotransformation of diisophorone by Botrytis cinerea. Daoubi M; Deligeorgopoulou A; Macías-Sánchez AJ; Hernández-Galán R; Hitchcock PB; Hanson JR; Collado IG J Agric Food Chem; 2005 Jul; 53(15):6035-9. PubMed ID: 16028992 [TBL] [Abstract][Full Text] [Related]
8. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions? Chagué V; Danit LV; Siewers V; Schulze-Gronover C; Tudzynski P; Tudzynski B; Sharon A Mol Plant Microbe Interact; 2006 Jan; 19(1):33-42. PubMed ID: 16404951 [TBL] [Abstract][Full Text] [Related]
9. Mannitol biosynthesis is required for plant pathogenicity by Alternaria alternata. Vélëz H; Glassbrook NJ; Daub ME FEMS Microbiol Lett; 2008 Aug; 285(1):122-9. PubMed ID: 18549402 [TBL] [Abstract][Full Text] [Related]
10. Primary roles of two dehydrogenases in the mannitol metabolism and multi-stress tolerance of entomopathogenic fungus Beauveria bassiana. Wang ZL; Lu JD; Feng MG Environ Microbiol; 2012 Aug; 14(8):2139-50. PubMed ID: 22118579 [TBL] [Abstract][Full Text] [Related]
11. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. van Kan JA Trends Plant Sci; 2006 May; 11(5):247-53. PubMed ID: 16616579 [TBL] [Abstract][Full Text] [Related]
12. D-mannitol production by resting state whole cell biotrans-formation of D-fructose by heterologous mannitol and formate dehydrogenase gene expression in Bacillus megaterium. Bäumchen C; Roth AH; Biedendieck R; Malten M; Follmann M; Sahm H; Bringer-Meyer S; Jahn D Biotechnol J; 2007 Nov; 2(11):1408-16. PubMed ID: 17619232 [TBL] [Abstract][Full Text] [Related]
13. Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch). Solomon PS; Waters OD; Jörgens CI; Lowe RG; Rechberger J; Trengove RD; Oliver RP Biochem J; 2006 Oct; 399(2):231-9. PubMed ID: 16859492 [TBL] [Abstract][Full Text] [Related]
14. Enzymes of mannitol metabolism in the human pathogenic fungus Aspergillus fumigatus--kinetic properties of mannitol-1-phosphate 5-dehydrogenase and mannitol 2-dehydrogenase, and their physiological implications. Krahulec S; Armao GC; Klimacek M; Nidetzky B FEBS J; 2011 Apr; 278(8):1264-76. PubMed ID: 21299839 [TBL] [Abstract][Full Text] [Related]
15. Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Valette-Collet O; Cimerman A; Reignault P; Levis C; Boccara M Mol Plant Microbe Interact; 2003 Apr; 16(4):360-7. PubMed ID: 12744465 [TBL] [Abstract][Full Text] [Related]
16. Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Galpha subunit BCG1 using suppression subtractive hybridization (SSH). Schulze Gronover C; Schorn C; Tudzynski B Mol Plant Microbe Interact; 2004 May; 17(5):537-46. PubMed ID: 15141958 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the cell wall of the ubiquitous plant pathogen Botrytis cinerea. Cantu D; Greve LC; Labavitch JM; Powell AL Mycol Res; 2009 Dec; 113(Pt 12):1396-403. PubMed ID: 19781643 [TBL] [Abstract][Full Text] [Related]
18. Spatial and developmental differentiation of mannitol dehydrogenase and mannitol-1-phosphate dehydrogenase in Aspergillus niger. Aguilar-Osorio G; Vankuyk PA; Seiboth B; Blom D; Solomon PS; Vinck A; Kindt F; Wösten HA; de Vries RP Eukaryot Cell; 2010 Sep; 9(9):1398-402. PubMed ID: 20305000 [TBL] [Abstract][Full Text] [Related]
19. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. Choquer M; Fournier E; Kunz C; Levis C; Pradier JM; Simon A; Viaud M FEMS Microbiol Lett; 2007 Dec; 277(1):1-10. PubMed ID: 17986079 [TBL] [Abstract][Full Text] [Related]
20. Ku70 or Ku80 deficiencies in the fungus Botrytis cinerea facilitate targeting of genes that are hard to knock out in a wild-type context. Choquer M; Robin G; Le Pêcheur P; Giraud C; Levis C; Viaud M FEMS Microbiol Lett; 2008 Dec; 289(2):225-32. PubMed ID: 19054110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]