BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 20136842)

  • 1. Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment.
    Vizi ES; Fekete A; Karoly R; Mike A
    Br J Pharmacol; 2010 Jun; 160(4):785-809. PubMed ID: 20136842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glia and volume transmission during physiological and pathological states.
    Syková E
    J Neural Transm (Vienna); 2005 Jan; 112(1):137-47. PubMed ID: 15599612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-synaptic interaction between neurons in the brain, an analog system: far from Cajal-Sherringtons's galaxy.
    Vizi ES
    Bull Mem Acad R Med Belg; 2003; 158(10-12):373-9; discussion 379-80. PubMed ID: 15244343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a novel tonic gamma-aminobutyric acidA receptor-mediated inhibition in magnocellular neurosecretory neurons and its modulation by glia.
    Park JB; Skalska S; Stern JE
    Endocrinology; 2006 Aug; 147(8):3746-60. PubMed ID: 16675519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulatory role of presynaptic nicotinic receptors in synaptic and non-synaptic chemical communication in the central nervous system.
    Vizi ES; Lendvai B
    Brain Res Brain Res Rev; 1999 Nov; 30(3):219-35. PubMed ID: 10567725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glia-neuron intercommunications and synaptic plasticity.
    Vernadakis A
    Prog Neurobiol; 1996 Jun; 49(3):185-214. PubMed ID: 8878303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity.
    Fellin T
    J Neurochem; 2009 Feb; 108(3):533-44. PubMed ID: 19187090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks.
    Borroto-Escuela DO; Agnati LF; Bechter K; Jansson A; Tarakanov AO; Fuxe K
    Philos Trans R Soc Lond B Biol Sci; 2015 Jul; 370(1672):. PubMed ID: 26009762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular space diffusion and extrasynaptic transmission.
    Vargová L; Syková E
    Physiol Res; 2008; 57 Suppl 3():S89-S99. PubMed ID: 18481911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion constraints and neuron-glia interaction during aging.
    Syková E; Mazel T; Simonová Z
    Exp Gerontol; 1998; 33(7-8):837-51. PubMed ID: 9951627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-lasting modulation of synaptic input to Purkinje neurons by Bergmann glia stimulation in rat brain slices.
    Brockhaus J; Deitmer JW
    J Physiol; 2002 Dec; 545(2):581-93. PubMed ID: 12456836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glial cells and volume transmission in the CNS.
    Syková E; Chvátal A
    Neurochem Int; 2000 Apr; 36(4-5):397-409. PubMed ID: 10733007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system.
    Vizi ES
    Pharmacol Rev; 2000 Mar; 52(1):63-89. PubMed ID: 10699155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial diffusion barriers during aging and pathological states.
    Syková E
    Prog Brain Res; 2001; 132():339-63. PubMed ID: 11545002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrasynaptic localization of glycine receptors in the rat supraoptic nucleus: further evidence for their involvement in glia-to-neuron communication.
    Deleuze C; Alonso G; Lefevre IA; Duvoid-Guillou A; Hussy N
    Neuroscience; 2005; 133(1):175-83. PubMed ID: 15893641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA is a modulator, rather than a classical transmitter, in the medial nucleus of the trapezoid body-lateral superior olive sound localization circuit.
    Fischer AU; Müller NIC; Deller T; Del Turco D; Fisch JO; Griesemer D; Kattler K; Maraslioglu A; Roemer V; Xu-Friedman MA; Walter J; Friauf E
    J Physiol; 2019 Apr; 597(8):2269-2295. PubMed ID: 30776090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intercellular communication in the brain: wiring versus volume transmission.
    Agnati LF; Zoli M; Strömberg I; Fuxe K
    Neuroscience; 1995 Dec; 69(3):711-26. PubMed ID: 8596642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume transmission and its different forms in the central nervous system.
    Fuxe K; Borroto-Escuela DO; Romero-Fernandez W; Zhang WB; Agnati LF
    Chin J Integr Med; 2013 May; 19(5):323-9. PubMed ID: 23674109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks.
    Agnati LF; Fuxe K
    Philos Trans R Soc Lond B Biol Sci; 2014 Sep; 369(1652):. PubMed ID: 25135966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extrasynaptic transmission and the diffusion parameters of the extracellular space.
    Syková E; Vargová L
    Neurochem Int; 2008 Jan; 52(1-2):5-13. PubMed ID: 17513016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.