These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 20136936)

  • 1. The neural basis of speech parsing in children and adults.
    McNealy K; Mazziotta JC; Dapretto M
    Dev Sci; 2010 Mar; 13(2):385-406. PubMed ID: 20136936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cracking the language code: neural mechanisms underlying speech parsing.
    McNealy K; Mazziotta JC; Dapretto M
    J Neurosci; 2006 Jul; 26(29):7629-39. PubMed ID: 16855090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age and experience shape developmental changes in the neural basis of language-related learning.
    McNealy K; Mazziotta JC; Dapretto M
    Dev Sci; 2011 Nov; 14(6):1261-82. PubMed ID: 22010887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental changes in the neural correlates of semantic processing.
    Chou TL; Booth JR; Burman DD; Bitan T; Bigio JD; Lu D; Cone NE
    Neuroimage; 2006 Feb; 29(4):1141-9. PubMed ID: 16275017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the neural correlates of continuous speech computation with frequency-tagged neuroelectric responses.
    Buiatti M; Peña M; Dehaene-Lambertz G
    Neuroimage; 2009 Jan; 44(2):509-19. PubMed ID: 18929668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of neural evidence for implicit language learning in 9-month-old infants at high risk for autism.
    Liu J; Tsang T; Ponting C; Jackson L; Jeste SS; Bookheimer SY; Dapretto M
    Dev Sci; 2021 Jul; 24(4):e13078. PubMed ID: 33368921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of sensory input, auditory search and verbal comprehension to cortical activity during speech processing.
    Giraud AL; Kell C; Thierfelder C; Sterzer P; Russ MO; Preibisch C; Kleinschmidt A
    Cereb Cortex; 2004 Mar; 14(3):247-55. PubMed ID: 14754865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An fMRI investigation of speech and tone segmentation.
    LoCasto PC; Krebs-Noble D; Gullapalli RP; Burton MW
    J Cogn Neurosci; 2004 Nov; 16(9):1612-24. PubMed ID: 15601523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experience with a second language affects the use of fundamental frequency in speech segmentation.
    Tremblay A; Namjoshi J; Spinelli E; Broersma M; Cho T; Kim S; Martínez-García MT; Connell K
    PLoS One; 2017; 12(7):e0181709. PubMed ID: 28738093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No neural evidence of statistical learning during exposure to artificial languages in children with autism spectrum disorders.
    Scott-Van Zeeland AA; McNealy K; Wang AT; Sigman M; Bookheimer SY; Dapretto M
    Biol Psychiatry; 2010 Aug; 68(4):345-51. PubMed ID: 20303070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.
    Berezutskaya J; Freudenburg ZV; Güçlü U; van Gerven MAJ; Ramsey NF
    J Neurosci; 2017 Aug; 37(33):7906-7920. PubMed ID: 28716965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical learning and prosodic bootstrapping differentially affect neural synchronization during speech segmentation.
    Elmer S; Valizadeh SA; Cunillera T; Rodriguez-Fornells A
    Neuroimage; 2021 Jul; 235():118051. PubMed ID: 33848624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ECoG gamma activity during a language task: differentiating expressive and receptive speech areas.
    Towle VL; Yoon HA; Castelle M; Edgar JC; Biassou NM; Frim DM; Spire JP; Kohrman MH
    Brain; 2008 Aug; 131(Pt 8):2013-27. PubMed ID: 18669510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Song and speech: brain regions involved with perception and covert production.
    Callan DE; Tsytsarev V; Hanakawa T; Callan AM; Katsuhara M; Fukuyama H; Turner R
    Neuroimage; 2006 Jul; 31(3):1327-42. PubMed ID: 16546406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive phonemic coding in the listening and speaking brain.
    Grabski K; Sato M
    Neuropsychologia; 2020 Jan; 136():107267. PubMed ID: 31770550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking transitional probabilities and segmenting auditory sequences are dissociable processes in adults and neonates.
    Benjamin L; Fló A; Palu M; Naik S; Melloni L; Dehaene-Lambertz G
    Dev Sci; 2023 Mar; 26(2):e13300. PubMed ID: 35772033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding the Cortical Dynamics of Sound-Meaning Mapping.
    Kocagoncu E; Clarke A; Devereux BJ; Tyler LK
    J Neurosci; 2017 Feb; 37(5):1312-1319. PubMed ID: 28028201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of stress and statistical cues on continuous speech segmentation: an event-related brain potential study.
    Cunillera T; Toro JM; Sebastián-Gallés N; Rodríguez-Fornells A
    Brain Res; 2006 Dec; 1123(1):168-78. PubMed ID: 17064672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical involvement in the semantic processing of coarticulated speech cues.
    Molfese DL
    Brain Lang; 1979 Jan; 7(1):86-100. PubMed ID: 435977
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of segmentation in phonological processing: an fMRI investigation.
    Burton MW; Small SL; Blumstein SE
    J Cogn Neurosci; 2000 Jul; 12(4):679-90. PubMed ID: 10936919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.